Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Transl Hepatol ; 12(3): 316-326, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38426197

ABSTRACT

Gallstone (GS) disease is common and arises from a combination of genetic and environmental factors. Although genetic abnormalities specifically leading to cholesterol GSs are rare, there are clinically significant gene variants associated with cholesterol GSs. In contrast, most bilirubin GSs can be attributed to genetic defects. The pathogenesis of cholesterol and bilirubin GSs differs greatly. Cholesterol GSs are notably influenced by genetic variants within the ABC protein superfamily, including ABCG8, ABCG5, ABCB4, and ABCB11, as well as genes from the apolipoprotein family such as ApoB100 and ApoE (especially the E3/E3 and E3/E4 variants), and members of the MUC family. Conversely, bilirubin GSs are associated with genetic variants in highly expressed hepatic genes, notably UGT1A1, ABCC2 (MRP2), ABCC3 (MRP3), CFTR, and MUC, alongside genetic defects linked to hemolytic anemias and conditions impacting erythropoiesis. While genetic cases constitute a small portion of GS disease, recognizing genetic predisposition is essential for proper diagnosis, treatment, and genetic counseling.

2.
Neurobiol Pain ; 14: 100141, 2023.
Article in English | MEDLINE | ID: mdl-38099280

ABSTRACT

2,6-di-tert-butylphenol (2,6-DTBP) ameliorates mechanical allodynia and thermal hyperalgesia produced by partial sciatic nerve ligation in mice, and selectively inhibits HCN1 channel gating. We hypothesized that the clinically utilized non-anesthetic dimerized congener of 2,6-DTBP, probucol (2,6-di-tert-butyl-4-[2-(3,5-di-tert-butyl-4-hydroxyphenyl)sulfanylpropan-2-ylsulfanyl]phenol), would relieve the neuropathic phenotype that results from peripheral nerve damage, and that the anti-hyperalgesic efficacy in vivo would correlate with HCN1 channel inhibition in vitro. A single oral dose of probucol (800 mg/kg) relieved mechanical allodynia and thermal hyperalgesia in a mouse spared-nerve injury neuropathic pain model. While the low aqueous solubility of probucol precluded assessment of its possible interaction with HCN1 channels, our results, in conjunction with recent data demonstrating that probucol reduces lipopolysaccharide-induced mechanical allodynia and thermal hyperalgesia, support the testing/development of probucol as a non-opioid, oral antihyperalgesic albeit one of unknown mechanistic action.

3.
Br J Anaesth ; 131(4): 745-763, 2023 10.
Article in English | MEDLINE | ID: mdl-37567808

ABSTRACT

BACKGROUND: Neuropathic pain impairs quality of life, is widely prevalent, and incurs significant costs. Current pharmacological therapies have poor/no efficacy and significant adverse effects; safe and effective alternatives are needed. Hyperpolarisation-activated cyclic nucleotide-regulated (HCN) channels are causally implicated in some forms of peripherally mediated neuropathic pain. Whilst 2,6-substituted phenols, such as 2,6-di-tert-butylphenol (26DTB-P), selectively inhibit HCN1 gating and are antihyperalgesic, the development of therapeutically tolerable, HCN-selective antihyperalgesics based on their inverse agonist activity requires that such drugs spare the cardiac isoforms and do not cross the blood-brain barrier. METHODS: In silico molecular dynamics simulation, in vitro electrophysiology, and in vivo rat spared nerve injury methods were used to test whether 'hindered' variants of 26DTB-P (wherein a hydrophilic 'anchor' is attached in the para-position of 26DTB-P via an acyl chain 'tether') had the desired properties. RESULTS: Molecular dynamics simulation showed that membrane penetration of hindered 26DTB-Ps is controlled by a tethered diol anchor without elimination of head group rotational freedom. In vitro and in vivo analysis showed that BP4L-18:1:1, a variant wherein a diol anchor is attached to 26DTB-P via an 18-carbon tether, is an HCN1 inverse agonist and an orally available antihyperalgesic. With a CNS multiparameter optimisation score of 2.25, a >100-fold lower drug load in the brain vs blood, and an absence of adverse cardiovascular or CNS effects, BP4L-18:1:1 was shown to be poorly CNS penetrant and cardiac sparing. CONCLUSIONS: These findings provide a proof-of-concept demonstration that anchor-tethered drugs are a new chemotype for treatment of disorders involving membrane targets.


Subject(s)
Drug Inverse Agonism , Neuralgia , Rats , Animals , Quality of Life , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/therapeutic use , Neuralgia/drug therapy , Electrophysiological Phenomena
4.
Dig Dis Sci ; 68(7): 2963-2974, 2023 07.
Article in English | MEDLINE | ID: mdl-36920665

ABSTRACT

BACKGROUND: Diabetes Mellitus causes a systemic oxidative stress due in part to the hyperglycemia and the reactive oxygen species generated. Up to 75% of diabetic patients present with an autonomic neuropathy affecting the Enteric Nervous System. Deficits in the human population are chronic dysmotilities with either increased (i.e., constipation) or decreased (i.e., diarrhea) total gastrointestinal transit times. These are recapitulated in the streptozocin-induced diabetic rat, which is a model of Type I Diabetes Mellitus. AIMS: Examine the effects that a precursor of nicotinamide adenosine dinucleotide (NAD), nicotinamide riboside (NR), had on the development of dysmotility in induced diabetic rats and if fecal microbiota transplant (FMT) could produce the same results. MATERIALS AND METHODS: Utilizing a 6-week treatment paradigm, NR was administered intraperitoneally every 48 h. Total gastrointestinal transit time was assessed weekly utilizing the carmine red method. Three weeks following hyperglycemic induction, FMT was performed between NR-treated animals and untreated animals. SIGNIFICANT RESULTS: There is improvement in overall gastrointestinal transit time with the use of NR. 16S microbiome sequencing demonstrated decreased alpha and beta diversity in induced diabetic rats without change in animals receiving FMT. Improvements in myenteric plexus ganglia density in small and large intestines in diabetic animals treated with NR were seen. CONCLUSIONS: NR treatment led to functional improvement in total gastrointestinal transit time in induced diabetic animals. This was associated with neuroprotection in the myenteric plexuses of both small and large intestines of induced diabetic rats. This represents an important first step in showing NR's benefit as a treatment for diabetic enteric neuropathy. Streptozocin-induced diabetic rats have improved transit times and increased myenteric plexus ganglia density when treated with intraperitoneal nicotinamide riboside.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Neuropathies , Intestinal Pseudo-Obstruction , Humans , Rats , Animals , Myenteric Plexus , Streptozocin/adverse effects , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/chemically induced , Neuroprotection , Niacinamide/adverse effects
5.
Front Mol Neurosci ; 14: 728163, 2021.
Article in English | MEDLINE | ID: mdl-34949989

ABSTRACT

Most diabetes patients eventually suffer from peripheral nerve degeneration. Unfortunately, there is no treatment for the condition and its mechanisms are not well understood. There is, however, an emerging consensus that the inability of peripheral nerves to regenerate normally after injury contributes to the pathophysiology. We have previously shown that regeneration of peripheral axons requires local axonal translation of a pool of axonal mRNAs and that the levels and members of this axonal mRNA pool are altered in response to injury. Here, we show that following sciatic nerve injury in a streptozotocin rodent model of type I diabetes, this mobilization of RNAs into the injured axons is attenuated and correlates with decreased axonal regeneration. This failure of axonal RNA localization results from decreased levels of the RNA binding protein ZBP1. Over-expression of ZBP1 rescues the in vitro growth defect in injured dorsal root ganglion neurons from diabetic rodents. These results provide evidence that decreased neuronal responsiveness to injury in diabetes is due to a decreased ability to alter the pool of axonal mRNAs available for local translation, and may open new therapeutic opportunities for diabetic peripheral neuropathy.

6.
Exp Neurol ; 328: 113281, 2020 06.
Article in English | MEDLINE | ID: mdl-32147437

ABSTRACT

Charcot-Marie-Tooth type 2A (CMT2A) peripheral neuropathy, the most common axonal form of CMT, is caused by dominantly inherited point mutations in the Mitofusin 2 (Mfn2) gene. It is characterized by progressive length-dependent degeneration of motor and sensory nerves with corresponding clinical features of motor and sensory impairment. There is no cure for CMT, and therapeutic approaches are limited to physical therapy, orthopedic devices, surgery, and analgesics. In this study we focus on histone deacetylase 6 (HDAC6) as a therapeutic target in a mouse model of mutant MFN2 (MFN2R94Q)-induced CMT2A. We report that these mice display progressive motor and sensory dysfunction as well as a significant decrease in α-tubulin acetylation in distal segments of long peripheral nerves. Treatment with a new, highly selective HDAC6 inhibitor, SW-100, was able to restore α-tubulin acetylation and ameliorate motor and sensory dysfunction when given either prior to or after the onset of symptoms. To confirm HDAC6 is the target for ameliorating the CMT2A phenotype, we show that genetic deletion of Hdac6 in CMT2A mice prevents the development of motor and sensory dysfunction. Our findings suggest α-tubulin acetylation defects in distal parts of nerves as a pathogenic mechanism and HDAC6 as a therapeutic target for CMT2A.


Subject(s)
Benzamides/pharmacology , Histone Deacetylase 6/antagonists & inhibitors , Histone Deacetylase Inhibitors/pharmacology , Quinolines/pharmacology , Tubulin/metabolism , Acetylation/drug effects , Animals , Charcot-Marie-Tooth Disease/metabolism , Mice , Mice, Mutant Strains , Motor Activity/drug effects
7.
Front Mol Neurosci ; 11: 311, 2018.
Article in English | MEDLINE | ID: mdl-30233312

ABSTRACT

Local protein synthesis in neuronal axons plays an important role in essential spatiotemporal signaling processes; however, the molecular basis for the post-transcriptional regulation controlling this process in axons is still not fully understood. Here we studied the axonal mechanisms underlying the transport and localization of microRNA (miRNA) and the RNAi machinery along the axon. We first identified miRNAs, Dicer, and Argonaute-2 (Ago2) in motor neuron (MN) axons. We then studied the localization of RNAi machinery and demonstrated that mitochondria associate with miR-124 and RNAi proteins in axons. Importantly, this co-localization occurs primarily at axonal branch points and growth cones. Moreover, using live cell imaging of a functional Cy3-tagged miR-124, we revealed that this miRNA is actively transported with acidic compartments in axons, and associates with stalled mitochondria at growth cones and axonal branch points. Finally, we observed enhanced retrograde transport of miR-124-Cy3, and a reduction in its localization to static mitochondria in MNs expressing the ALS causative gene hSOD1G93A. Taken together, our data suggest that mitochondria participate in the axonal localization and transport of RNAi machinery, and further imply that alterations in this mechanism may be associated with neurodegeneration in ALS.

8.
Dev Neurobiol ; 78(3): 209-220, 2018 03.
Article in English | MEDLINE | ID: mdl-29115051

ABSTRACT

Axons and growth cones, by their very nature far removed from the cell body, encounter unique environments and require distinct populations of proteins. It seems only natural, then, that they have developed mechanisms to locally synthesize a host of proteins required to perform their specialized functions. Acceptance of this ability has taken decades; however, there is now consensus that axons do indeed have the capacity for local translation, and that this capacity is even retained into adulthood. Accumulating evidence supports the role of locally synthesized proteins in the proper development, maintenance, and function of neurons, and newly emerging studies also suggest that disruption in this process has implications in a number of neurodevelopmental and neurodegenerative diseases. Here, we briefly review the long history of axonal mRNA localization and local translation, and the role that these locally synthesized proteins play in normal neuronal function. Additionally, we highlight the emerging evidence that dysregulation in these processes contributes to a wide range of pathophysiology, including neuropsychiatric disorders, Alzheimer's, and motor neuron diseases such as spinal muscular atrophy and Amyotrophic Lateral Sclerosis. © 2017 Wiley Periodicals, Inc. Develop. Neurobiol 78: 209-220, 2018.


Subject(s)
Axonal Transport/physiology , Axons/metabolism , Neurodegenerative Diseases/metabolism , RNA, Messenger/metabolism , Animals , Humans
9.
Sci Rep ; 7: 44500, 2017 03 16.
Article in English | MEDLINE | ID: mdl-28300211

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a multifactorial lethal motor neuron disease with no known treatment. Although the basic mechanism of its degenerative pathogenesis remains poorly understood, a subcellular spatial alteration in RNA metabolism is thought to play a key role. The nature of these RNAs remains elusive, and a comprehensive characterization of the axonal RNAs involved in maintaining neuronal health has yet to be described. Here, using cultured spinal cord (SC) neurons grown using a compartmented platform followed by next-generation sequencing (NGS) technology, we find that RNA expression differs between the somatic and axonal compartments of the neuron, for both mRNA and microRNA (miRNA). Further, the introduction of SOD1G93A and TDP43A315T, established ALS-related mutations, changed the subcellular expression and localization of RNAs within the neurons, showing a spatial specificity to either the soma or the axon. Altogether, we provide here the first combined inclusive profile of mRNA and miRNA expression in two ALS models at the subcellular level. These data provide an important resource for studies on the roles of local protein synthesis and axon degeneration in ALS and can serve as a possible target pool for ALS treatment.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Axons/metabolism , DNA-Binding Proteins/genetics , Superoxide Dismutase-1/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Axons/pathology , Disease Models, Animal , Gene Expression Regulation/genetics , Humans , Mice , Motor Neurons/metabolism , Motor Neurons/pathology , Nerve Degeneration , RNA, Untranslated/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...