Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Rep ; 51(1): 187, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38270684

ABSTRACT

BACKGROUND: Leukemias stand out for being the main type of childhood cancer in the world. Current treatments have strong side effects for patients, and there is still a high rate of development of resistance to multidrug therapy. Previously, our research group developed a structure-activity study with novel synthetic molecules analogous to LQB-278, described as an essential molecule with in vitro antileukemic action. Among these analogs, LQB-461 stood out, presenting more significant antileukemic action compared to its derivative LQB-278, with cytostatic and cytotoxicity effect by apoptosis, inducing caspase-3, and increased sub-G1 phase on cell cycle analysis. METHODS AND RESULTS: Deepening the study of the mechanism of action of LQB-461 in Jurkat cells in vitro, a microarray assay was carried out, which confirmed the importance of the apoptosis pathway in the LQB-461 activity. Through real-time PCR, we validated an increased expression of CDKN1A and BAX genes, essential mediators of the apoptosis intrinsic pathway. Through the extrinsic apoptosis pathway, we found an increased expression of the Fas receptor by flow cytometry, showing the presence of a more sensitive population and another more resistant to death. Considering the importance of autophagy in cellular resistance, it was demonstrated by western blotting that LQB-461 decreased LC-3 protein expression, an autophagic marker. CONCLUSIONS: These results suggest that this synthetic molecule LQB-461 induces cell death by apoptosis in Jurkat cells through intrinsic and extrinsic pathways and inhibits autophagy, overcoming some mechanisms of cell resistance related to this process, which differentiates LQB-461 of other drugs used for the leukemia treatment.


Subject(s)
Benzaldehydes , Imines , Leprostatic Agents , Humans , Drug Therapy, Combination , Jurkat Cells , Data Analysis
2.
Anticancer Res ; 41(10): 4929-4936, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34593440

ABSTRACT

BACKGROUND/AIM: A new set of LQB-nitrones and analogues was synthesized to evaluate anticancer activity based on the substitution of the terpenyl moiety of the antileukemic compound LQB-278 by the conformationally restricted cinnamyl ether. MATERIALS AND METHODS: A structure-activity relationship study was performed in vitro on Jurkat cells to screen the antileukemic activity of LQB-nitrones and analogues and elucidate the mechanisms of action of the most active derivatives. RESULTS: The cynamyl ramification and its ortho position aldehyde substitution improved the antileukemic activity. Three compounds showed an in vitro antiproliferative action, but only 5b induced apoptosis. Analysis of the molecular mechanisms showed increased expression of the cell cycle inhibitor p21CIP1/WAF1/Sdi1, caspase 3, Fas receptor, and Bax/Bcl-2 ratio. CONCLUSION: The cinnamyl derivative 5b (LQB-461) presented higher antileukemic effects than the prototype terpenyl nitrone, inducing Jurkat cell death by activating both extrinsic and intrinsic pathways of apoptosis. Therefore, this compound is a new promising candidate drug against leukemia.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Imines/chemistry , Leukemia/drug therapy , Nitrogen Oxides/chemistry , Nitrogen Oxides/pharmacology , Apoptosis , Cell Proliferation , Humans , Leukemia/pathology , Tumor Cells, Cultured
3.
Bioorg Med Chem ; 23(9): 2053-61, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25813896

ABSTRACT

New O-isoprenylated-N-methylarylnitrones derived from isomeric o, m and p-hydroxybenzaldehydes have been prepared and the antineoplastic effects on human cancer cell lines were evaluated. The O-geranylated nitrone LQB-278 (1b) and its isomers 2b and 3b inhibited the NO production, but the anti-leukemic activity was drastically dependent on nitrone isomer, with the 1b being the most effective one (IC50 of 6.7 µM) on Jurkat leukemia cell, by MTT assay. In addition, 1b up-regulated p21CIP1/WAF1/Sdi1 protein expression (flow cytometry), a cell cycle inhibitor, reduced cell growth, and induced DNA fragmentation (increased sub-G1 phase cells) and phosphatidylserine externalization in plasmatic membrane (increased annexin V positive cells). Finally, the 1b up-regulation of p21 expression and apoptosis induction seem to be the mechanisms by which it promotes its anti-leukemic effects, making this new molecular architecture a promising prototype for leukemia intervention.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Benzaldehydes/chemistry , Nitrogen Oxides/chemical synthesis , Nitrogen Oxides/pharmacology , Animals , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , K562 Cells , Mice , Molecular Structure , NIH 3T3 Cells , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Nitrogen Oxides/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...