Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 160(21)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38828820

ABSTRACT

We present the first systematic application of the integral equation implementation of the replica method to the study of arrested states in fluids with microscopic competing interactions (short-range attractive and long-range repulsive, SALR), as exemplified by the prototype Lennard-Jones-Yukawa model. Using a wide set of potential parameters, we provide as many as 11 different phase diagrams on the density (ρ)-temperature (T) plane, embodying both the cluster-phase boundary, TC(ρ), and the locus below which arrest takes place, TD(ρ). We describe how the interplay between TC and TD-with the former falling on top of the other, or the other way around, depending on thermodynamic conditions and potential parameters-gives rise to a rich variety of non-ergodic states interspersed with ergodic ones, of which both the building blocks are clusters or single particles. In a few cases, we find that the TD locus does not extend all over the density range subtended by the TC envelope; under these conditions, the λ-line is within reach of the cluster fluid, with the ensuing possibility to develop ordered microphases. Whenever a comparison is possible, our predictions favorably agree with previous numerical results. Thereby, we demonstrate the reliability and effectiveness of our scheme to provide a unified theoretical framework for the study of arrested states in SALR fluids, irrespective of their nature.

2.
J Chem Phys ; 159(20)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38010334

ABSTRACT

In a binary mixture, stripes refer to a one-dimensional periodicity of the composition, namely, a regular alternation of layers filled with particles of mostly one species. We have recently introduced [Munaò et al., Phys. Chem. Chem. Phys. 25, 16227 (2023)] a model that possibly provides the simplest binary mixture endowed with stripe order. The model consists of two species of identical hard spheres with equal concentration, which mutually interact through a square-well potential. In that paper, we have numerically shown that stripes are present in both liquid and solid phases when the attraction range is rather long. Here, we study the phase behavior of the model in terms of a density functional theory capable to account for the existence of stripes in the dense mixture. Our theory is accurate in reproducing the phases of the model, at least insofar as the composition inhomogeneities occur on length scales quite larger than the particle size. Then, using Monte Carlo simulations, we prove the existence of solid stripes even when the square well is much thinner than the particle diameter, making our model more similar to a real colloidal mixture. Finally, when the width of the attractive well is equal to the particle diameter, we observe a different and more complex form of compositional order in the solid, where each species of particle forms a regular porous matrix holding in its holes the other species, witnessing a surprising variety of emergent behaviors for a very basic model of interaction.

3.
Phys Rev E ; 108(3-1): 034602, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37849187

ABSTRACT

Due to the presence of competing interactions, the square-well-linear fluid can exhibit either liquid-vapor equilibrium (macrophase separation) or clustering (microphase separation). Here we address the issue of determining the boundary between these two regimes, i.e., the Lifshitz point, expressed in terms of a relationship between the parameters of the model. To this aim, we carry out Monte Carlo simulations to compute the structure factor of the fluid, whose behavior at low wave vectors accurately captures the tendency of the fluid to form aggregates or, alternatively, to phase separate. Specifically, for a number of different combinations of attraction and repulsion ranges, we make the system go across the Lifshitz point by increasing the strength of the repulsion. We use simulation results to benchmark the performance of two theories of fluids, namely, the hypernetted chain (HNC) equation and the analytically solvable random phase approximation (RPA); in particular, the RPA theory is applied with two different prescriptions as for the direct correlation function inside the core. Overall, the HNC theory proves to be an appropriate tool to characterize the fluid structure and the low-wave-vector behavior of the structure factor is consistent with the threshold between microphase and macrophase separation established through simulation. The structural predictions of the RPA theory turn out to be less accurate, but this theory offers the advantage of providing an analytical expression of the Lifshitz point. Compared to simulation, both RPA schemes predict a Lifshitz point that falls within the macrophase-separation region of parameters: in the best case, barriers roughly twice higher than predicted are required to attain clustering conditions.

4.
Phys Chem Chem Phys ; 25(24): 16227-16237, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37194397

ABSTRACT

Self-assembly of colloidal particles into striped phases is at once a process of relevant technological interest-just think about the possibility to realise photonic crystals with a dielectric structure modulated along a specific direction-and a challenging task, since striped patterns emerge in a variety of conditions, suggesting that the connection between the onset of stripes and the shape of the intermolecular potential is yet to be fully unravelled. Hereby, we devise an elementary mechanism for the formation of stripes in a basic model consisting of a symmetric binary mixture of hard spheres that interact via a square-well cross attraction. Such a model would mimic a colloid in which the interspecies affinity is of longer range and significantly stronger than the intraspecies interaction. For attraction ranges shorter enough than the particle size the mixture behaves like a compositionally-disordered simple fluid. Instead, for wider square-wells, we document by numerical simulations the existence of striped patterns in the solid phase, where layers of particles of one species are interspersed with layers of the other species; increasing the attraction range stabilises the stripes further, in that they also appear in the bulk liquid and become thicker in the crystal. Our results lead to the counterintuitive conclusion that a flat and sufficiently long-ranged unlike attraction promotes the aggregation of like particles into stripes. This finding opens a novel way for the synthesis of colloidal particles with interactions tailored at the development of stripe-modulated structures.

5.
Soft Matter ; 18(34): 6453-6464, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35984438

ABSTRACT

We investigate by Monte Carlo simulations a mixture of particles with competing interactions (hard-sphere two-Yukawa, HSTY) and hard spheres (HS), with same diameters σ and a square-well (SW) cross attraction. In a recent study [G. Munaò et al., J. Phys. Chem. B, 2022, 126, 2027-2039], we have analysed situations-in terms of relative concentration and attraction strength-where HS promote the formation of clusters involving particles of both species under thermodynamic conditions that would not allow for clustering of the pure HSTY fluid. Here, we focus on the role played by the range of cross attraction in determining the equilibrium structure of the mixture, starting from a homogeneous low-density state. When the width of the well exceeds approximately σ, clustering takes place in the system, with aggregates characterised by various sizes and shapes. Only for low HSTY concentrations (less than 10%) a single big cluster appears, anticipating the behaviour observed for a wider well, around 1.2σ. In the latter case, a spherical cluster encompassing almost all particles is the stable structure at equilibrium. We interpret this outcome as a macrophase, liquid-vapour separation where the spherical cluster is just the form taken at low density by the liquid phase inside the vapour phase: indeed, when the density takes larger values, periodic boundary conditions select liquid-vapour interfaces with other non-spherical shapes, similarly as found for a finite sample of simple fluid going through the liquid-vapour coexistence region. For still higher densities we document the existence of a solid phase characterized by the alternation of bilayers filled with particles of one species and bilayers of the other species, giving the solid a peculiar wafer structure.

6.
J Phys Chem B ; 126(9): 2027-2039, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35224968

ABSTRACT

Self-assembling complex fluids are often modeled as particles with effective competing isotropic interactions, combining a short-range attraction (SA) followed by a longer-range repulsion (LR). For moderately low temperatures and densities, SALR particles form clusters in equilibrium, at least provided that the potential parameters are appropriate. Here we inquire into the possibility that cluster formation in SALR fluids might be pushed by a foreign species even under thermodynamic conditions that would not allow for clusterization of the pure system. To this aim, we study by Monte Carlo simulations a mixture of hard-sphere two-Yukawa particles and hard spheres, with a cross interaction modeled by a square-well attraction, and we investigate the conditions of clustering in terms of strength of attraction and relative concentration of the two species. We find that clusters can occur in the mixture for the same temperature and density where the pure SALR fluid is almost structureless. In particular, we single out a cross attraction such that clusters are formed with a SALR concentration as low as 5%. We also find a situation where nearly pure droplets of hard spheres are held together by a shell of SALR particles. Conversely, we show that clustering can be undermined in the mixture under conditions for which this process takes place in the parent SALR fluid. Using a simple criterion, based on the second virial coefficients of the attractive part of interaction potentials (the so-called "reference attractive fluids"), we are able to predict accurately whether clustering is favored (or hindered) in the mixture, as compared to the pure SALR fluid.


Subject(s)
Thermodynamics , Cluster Analysis , Monte Carlo Method , Temperature
7.
Phys Chem Chem Phys ; 23(39): 22661-22672, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34604896

ABSTRACT

We use Monte Carlo simulation and the Reference Interaction Site Model (RISM) theory of molecular fluids to investigate a simple model of colloidal mixture consisting of dimers, made up of two tangent hard monomers of different size, and hard spheres. In addition to steric repulsion, the two species interact via a square-well attraction only between small monomers and spheres. Recently, we have characterized the low-temperature regime of this mixture by Monte Carlo, reporting on the spontaneous formation of a wide spectrum of supramolecular aggregates [Prestipino et al., J. Phys. Chem. B, 2019, 123, 9272]. Here we focus on a regime of temperatures where, on cooling, the appearance of local inhomogeneties first, and the early stages of aggregation thereafter, are observed. In particular, we find signatures of aggregation in the onset of a low-wavevector peak in the structure factors of the mixture, as computed by both theory and simulation. Then, we link the structural information to the microscopic arrangement through a detailed cluster analysis of Monte Carlo configurations. In this regard, we devise a novel method to compute the maximum distance for which two spheres can be regarded as bonded together, a crucial issue in the proper identification of fluid aggregates. The RISM theory provides relatively accurate structural and thermodynamic predictions in comparison with Monte Carlo, but with slightly degrading performances as the fluid progresses inside the locally inhomogeneous phase. Our study certifies the efficacy of the RISM approach as a useful complement to numerical simulation for a reasoned analysis of aggregation properties in colloidal mixtures.

8.
Phys Chem Chem Phys ; 22(9): 5355-5365, 2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32096535

ABSTRACT

In a preliminary study [Phys. Chem. Chem. Phys., 2017, 19, 15247], we have recently documented an elusive mechanism underlying the cluster formation in model fluids with microscopic competing interactions (hard-sphere two-Yukawa). This mechanism consists in a tiny rearrangement of a distant correlation peak in the local density profile. For weak attractions, this peak contributes to the shallow, long-wave oscillation typical of such fluids; as the attraction strengthens, such a portion progressively disengages from the long-range behaviour, and moving backwards takes on the character of a new shell of neighbours, falling beyond the existing ones at shorter distances. This "reversal of trend" - despite its tiny size, in comparison with the overall aspect of the density profile - is shown to precisely occur at the onset of clustering. The scope of the present study is twofold. In the first instance, we positively assess our preliminary finding. To this aim we have studied by Monte Carlo simulations different families of two-Yukawa fluids, under the same conditions investigated in the original paper, namely fixed temperature, high fluid-density and increasingly attractive strength. Apparently, the reversal of trend in spatial correlations sets as a sensitive criterion to identify the clustering threshold, complementing other common indicators, based on the modifications undergone by the low-wavevector peak in the structure factor. Secondly, we document the accuracy of the Hypernetted Chain theory in predicting the spatial rearrangement under scrutiny. This evidence paves the way to an extended investigation of the observed phenomenology by the complementary use of theoretical and simulation tools.

9.
J Phys Chem B ; 123(43): 9272-9280, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31584819

ABSTRACT

Building structures with hierarchical order through the self-assembly of smaller blocks is not only a prerogative of nature, but also a strategy to design artificial materials with tailored functions. We explore in simulation the spontaneous assembly of colloidal particles into extended structures, using spheres and size-asymmetric dimers as solute particles, while treating the solvent implicitly. Besides rigid cores for all particles, we assume an effective short-range attraction between spheres and small monomers to promote, through elementary rules, dimer-mediated aggregation of spheres. Starting from a completely disordered configuration, we follow the evolution of the system at low temperature and density, as a function of the relative concentration of the two species. When spheres and large monomers are of same size, we observe the onset of elongated aggregates of spheres, either disconnected or cross-linked, and a crystalline bilayer. As spheres grow bigger, the self-assembling scenario changes, getting richer overall, with the addition of flexible membrane sheets with crystalline order and monolayer vesicles. With this wide assortment of structures, our model can serve as a viable template to achieve a better control of self-assembly in dilute suspensions of microsized particles.

10.
J Chem Phys ; 149(23): 234907, 2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30579317

ABSTRACT

We study theoretically a prototype hard-sphere two-Yukawa model with competing interactions, under thermodynamic conditions associated with the formation of clusters. We adopt the analytically solvable random phase approximation and show that this theory predicts reasonably well the structure of the fluid-in comparison with exact Monte Carlo results-within a unique parameterization of the direct correlation function inside the hard core of particles. In particular, the theory follows correctly the development, in the structure factor, of a local peak at low wavevectors, as peculiarly associated with the onset of aggregation. We then model the direct correlation function in the same wavevector regime by a Gaussian function, so as to systematically investigate, in a "reverse" scheme, how varying the properties of the local peak modifies the original underlying competing interaction. We show that large variations in the height of the peak are generally associated with comparatively smaller variations in the height of the microscopic repulsive barrier; moreover, the shrinking and shifting towards lower wavevectors of the peak may be interpreted in terms of the displacement of the barrier, producing a substantial enlargement of the range of both the attractive and repulsive contributions to the interaction potential. Finally, we document the way the repulsive barrier tends to vanish as the two-Yukawa fluid approaches a "simple fluid" behavior, heralding the onset of a liquid-vapor phase separation.

11.
Phys Rev E ; 98(1-1): 010103, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30110854

ABSTRACT

We show by extensive molecular dynamics simulations that accurate predictions of liquid-vapor coexistence in molten alkali halides can be achieved in terms of a rigid ion potential description in which temperature-dependent ionic diameters are employed. The new ionic sizes result from the fitting of the experimental isothermal compressibilities, a condition whose physical implications and consequences are illustrated. The same diameters also allow us to formulate confident predictions for the compressibilities of salts in cases where the experimental data are lacking. The extension of the present approach to molten alkali-halide mixtures and to other classes of molten salts is discussed.

12.
J Chem Phys ; 147(14): 144902, 2017 Oct 14.
Article in English | MEDLINE | ID: mdl-29031271

ABSTRACT

The emergence of supramolecular aggregates from simple microscopic interaction rules is a fascinating feature of complex fluids which, besides its fundamental interest, has potential applications in many areas, from biological self-assembly to smart material design. We here investigate by Monte Carlo simulation the equilibrium structure of a two-dimensional mixture of asymmetric dimers and spheres (disks). Dimers and disks are hard particles, with an additional short-range attraction between a disk and the smaller monomer of a dimer. The model parameters and thermodynamic conditions probed are typical of colloidal fluid mixtures. In spite of the minimalistic character of the interaction, we observe-upon varying the relative concentration and size of the two colloidal species-a rich inventory of mesoscale structures at low temperature, such as clusters, lamellæ (i.e., polymer-like chains), and gel-like networks. For colloidal species of similar size and near equimolar concentrations, a dilute fluid of clusters gives way to floating lamellæ upon cooling; at higher densities, the lamellæ percolate through the simulation box, giving rise to an extended network. A crystal-vapour phase-separation may occur for a mixture of dimers and much larger disks. Finally, when the fluid is brought in contact with a planar wall, further structures are obtained at the interface, from layers to branched patterns, depending on the nature of wall-particle interactions.

13.
Phys Chem Chem Phys ; 19(23): 15247-15255, 2017 Jun 14.
Article in English | MEDLINE | ID: mdl-28569299

ABSTRACT

We use Monte Carlo simulations to carry out a thorough analysis of structural correlations arising in a relatively dense fluid of rigid spherical particles with prototype competing interactions (short-range attractive and long-range repulsive two-Yukawa model). As the attraction strength increases, we show that the local density of the fluid displays a tiny reversal of trend within specific ranges of interparticle distances, whereupon it decreases first and increases afterwards, passing through a local minimum. Particles involved in this trend display, accordingly, distinct behaviours: for a sufficiently weak attraction, they seem to contribute to the long-wave oscillations typically heralding the formation of patterns in such fluids; for a stronger attraction, after the reversal of the local density has occurred, they form an outer shell of neighbours stabilizing the existing aggregation seeds. Following the increment of attraction, precisely in correspondence of the local density reversal, the local peak developed in the structure factor at small wavevectors markedly rises, signalling-in agreement with recent structural criteria-the onset of a clustered state. A detailed cluster analysis of microscopic configurations fully validates this picture.

14.
J Chem Phys ; 146(8): 084902, 2017 Feb 28.
Article in English | MEDLINE | ID: mdl-28249437

ABSTRACT

We investigate the structure of a dilute mixture of amphiphilic dimers and spherical particles, a model relevant to the problem of encapsulating globular "guest" molecules in a dispersion. Dimers and spheres are taken to be hard particles, with an additional attraction between spheres and the smaller monomers in a dimer. Using the Monte Carlo simulation, we document the low-temperature formation of aggregates of guests (clusters) held together by dimers, whose typical size and shape depend on the guest concentration χ. For low χ (less than 10%), most guests are isolated and coated with a layer of dimers. As χ progressively increases, clusters grow in size becoming more and more elongated and polydisperse; after reaching a shallow maximum for χ≈50%, the size of clusters again reduces upon increasing χ further. In one case only (χ=50% and moderately low temperature) the mixture relaxed to a fluid of lamellae, suggesting that in this case clusters are metastable with respect to crystal-vapor separation. On heating, clusters shrink until eventually the system becomes homogeneous on all scales. On the other hand, as the mixture is made denser and denser at low temperature, clusters get increasingly larger until a percolating network is formed.

15.
J Phys Condens Matter ; 28(41): 414007, 2016 10 19.
Article in English | MEDLINE | ID: mdl-27548461

ABSTRACT

Inspired by significant improvements obtained for the performances of the polymer reference interaction site model (PRISM) theory of the fluid phase when coupled with 'molecular closures' (Schweizer and Yethiraj 1993 J. Chem. Phys. 98 9053), we exploit a matrix generalization of this concept, suitable for the more general RISM framework. We report a preliminary test of the formalism, as applied to prototype square-well homonuclear diatomics. As for the structure, comparison with Monte Carlo shows that molecular closures are slightly more predictive than their 'atomic' counterparts, and thermodynamic properties are equally accurate. We also devise an application of molecular closures to models interacting via continuous, soft-core potentials, by using well established prescriptions in liquid state perturbation theories. In the case of Lennard-Jones dimers, our scheme definitely improves over the atomic one, providing semi-quantitative structural results, and quite good estimates of internal energy, pressure and phase coexistence. Our finding paves the way to a systematic employment of molecular closures within the RISM framework to be applied to more complex systems, such as molecules constituted by several non-equivalent interaction sites.

16.
Phys Chem Chem Phys ; 18(36): 24922-30, 2016 Sep 28.
Article in English | MEDLINE | ID: mdl-27538707

ABSTRACT

We study by Monte Carlo simulation the coating process of colloidal dimers onto spherical nanoparticles. To this end we investigate a simplified mixture of hard spheres (the guest particles) and hard dimers formed by two tangent spheres of different sizes (the encapsulating agents) in an implicit-solvent representation; in our scheme, the range of effective interactions between the smaller particle in a dimer and a guest sphere depends on their relative size. By tuning the size and concentration of guests, under overall dilute conditions a rich phase behavior emerges: for small sizes and/or low concentrations, the preferred arrangement is compact aggregates (capsules) of variable sizes, where one or few guest particles are coated with dimers; for larger sizes and moderate guest concentrations, other scenarios are realized, including equilibrium separation between a guest-rich and a guest-poor phase. Our results serve as a framework for a more systematic investigation of self-assembled structures of functionalized dimers capable of encapsulating target particles, like for instance bioactive substances in a colloidal dispersion.

17.
Article in English | MEDLINE | ID: mdl-26382377

ABSTRACT

Within the coexistence region between liquid and vapor the equilibrium pressure of a simulated fluid exhibits characteristic jumps and plateaus when plotted as a function of density at constant temperature. These features exclusively pertain to a finite-size sample in a periodic box, as they are washed out in the bulk limit. Below the critical density, at each pressure jump the shape of the liquid drop undergoes a morphological transition, changing from spherical to cylindrical to slablike as the density is increased. We formulate a simple theory of these shape transitions, which is adapted from a calculation originally developed by Binder and coworkers [L. G. MacDowell, P. Virnau, M. Muller, and K. Binder, J. Chem. Phys. 120, 5293 (2004)]. Our focus is on the pressure equation of state (rather than on the chemical potential, as in the original work) and includes an extension to elongated boxes. Predictions based on this theory well agree with extensive Monte Carlo data for the cut-and-shifted Lennard-Jones fluid. We further discuss the thermodynamic stability of liquid drops with shapes other than the three mentioned above, like those found deep inside the liquid-vapor region in simulations starting from scratch. Our theory classifies these more elaborate shapes as metastable.

18.
J Chem Phys ; 142(22): 224904, 2015 Jun 14.
Article in English | MEDLINE | ID: mdl-26071728

ABSTRACT

We investigate thermodynamic properties of anisotropic colloidal dumbbells in the frameworks provided by the Reference Interaction Site Model (RISM) theory and an Optimized Perturbation Theory (OPT), this latter based on a fourth-order high-temperature perturbative expansion of the free energy, recently generalized to molecular fluids. Our model is constituted by two identical tangent hard spheres surrounded by square-well attractions with same widths and progressively different depths. Gas-liquid coexistence curves are obtained by predicting pressures, free energies, and chemical potentials. In comparison with previous simulation results, RISM and OPT agree in reproducing the progressive reduction of the gas-liquid phase separation as the anisotropy of the interaction potential becomes more pronounced; in particular, the RISM theory provides reasonable predictions for all coexistence curves, bar the strong anisotropy regime, whereas OPT performs generally less well. Both theories predict a linear dependence of the critical temperature on the interaction strength, reproducing in this way the mean-field behavior observed in simulations; the critical density­that drastically drops as the anisotropy increases­turns to be less accurate. Our results appear as a robust benchmark for further theoretical studies, in support to the simulation approach, of self-assembly in model colloidal systems.

19.
J Chem Phys ; 142(21): 214502, 2015 Jun 07.
Article in English | MEDLINE | ID: mdl-26049503

ABSTRACT

Specialized Monte Carlo methods are nowadays routinely employed, in combination with thermodynamic integration (TI), to locate phase boundaries of classical many-particle systems. This is especially useful for the fluid-solid transition, where a critical point does not exist and both phases may notoriously go deeply metastable. Using the Lennard-Jones model for demonstration, we hereby investigate on the alternate possibility of tracing reasonably accurate transition lines directly by integrating the pressure equation of state computed in a canonical-ensemble simulation with local moves. The recourse to this method would become a necessity when the stable crystal structure is not known. We show that, rather counterintuitively, metastability problems can be alleviated by reducing (rather than increasing) the size of the system. In particular, the location of liquid-vapor coexistence can exactly be predicted by just TI. On the contrary, TI badly fails in the solid-liquid region, where a better assessment (to within 10% accuracy) of the coexistence pressure can be made by following the expansion, until melting, of the defective solid which has previously emerged from the decay of the metastable liquid.

20.
Soft Matter ; 10(29): 5269-79, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-24894703

ABSTRACT

We numerically investigate colloidal dimers with asymmetric interaction strengths to study how the interplay between molecular geometry, excluded volume effects and attractive forces determines the overall phase behavior of such systems. Specifically, our model is constituted by two rigidly-connected tangent hard spheres interacting with other particles in the first instance via identical square-well attractions. Then, one of the square-well interactions is progressively weakened, until only the corresponding bare hard-core repulsion survives, giving rise to a "Janus dumbbell" model. We investigate structure, thermodynamics and phase behavior of the model by means of successive umbrella sampling and Monte Carlo simulations. In most of the cases, the system behaves as a standard simple fluid, characterized by a gas-liquid phase separation, for sufficiently low temperatures. In these conditions we observe a remarkable linear scaling of the critical temperature as a function of the interaction strength. But, as the interaction potential approaches the Janus dumbbell limit, we observe the spontaneous formation of self-assembled lamellar structures, preempting the gas-liquid phase separation. Comparison with previous studies allows us to pinpoint the role of the interaction range in controlling the onset of ordered structures and the competition between the formation of these structures and gas-liquid condensation.

SELECTION OF CITATIONS
SEARCH DETAIL
...