Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Complex Netw Appl XI (2023) ; 1078: 135-147, 2023.
Article in English | MEDLINE | ID: mdl-37916070

ABSTRACT

In weighted graphs the shortest path between two nodes is often reached through an indirect path, out of all possible connections, leading to structural redundancies which play key roles in the dynamics and evolution of complex networks. We have previously developed a parameter-free, algebraically-principled methodology to uncover such redundancy and reveal the distance backbone of weighted graphs, which has been shown to be important in transmission dynamics, inference of important paths, and quantifying the robustness of networks. However, the method was developed for undirected graphs. Here we expand this methodology to weighted directed graphs and study the redundancy and robustness found in nine networks ranging from social, biomedical, and technical systems. We found that similarly to undirected graphs, directed graphs in general also contain a large amount of redundancy, as measured by the size of their (directed) distance backbone. Our methodology adds an additional tool to the principled sparsification of complex networks and the measure of their robustness.

2.
Entropy (Basel) ; 25(2)2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36832740

ABSTRACT

Biomolecular network dynamics are thought to operate near the critical boundary between ordered and disordered regimes, where large perturbations to a small set of elements neither die out nor spread on average. A biomolecular automaton (e.g., gene, protein) typically has high regulatory redundancy, where small subsets of regulators determine activation via collective canalization. Previous work has shown that effective connectivity, a measure of collective canalization, leads to improved dynamical regime prediction for homogeneous automata networks. We expand this by (i) studying random Boolean networks (RBNs) with heterogeneous in-degree distributions, (ii) considering additional experimentally validated automata network models of biomolecular processes, and (iii) considering new measures of heterogeneity in automata network logic. We found that effective connectivity improves dynamical regime prediction in the models considered; in RBNs, combining effective connectivity with bias entropy further improves the prediction. Our work yields a new understanding of criticality in biomolecular networks that accounts for collective canalization, redundancy, and heterogeneity in the connectivity and logic of their automata models. The strong link we demonstrate between criticality and regulatory redundancy provides a means to modulate the dynamical regime of biochemical networks.

3.
PRX Life ; 1(2)2023 Dec.
Article in English | MEDLINE | ID: mdl-38487681

ABSTRACT

Complex living systems are thought to exist at the "edge of chaos" separating the ordered dynamics of robust function from the disordered dynamics of rapid environmental adaptation. Here, a deeper inspection of 72 experimentally supported discrete dynamical models of cell processes reveals previously unobserved order on long time scales, suggesting greater rigidity in these systems than was previously conjectured. We find that propagation of internal perturbations is transient in most cases, and that even when large perturbation cascades persist, their phenotypic effects are often minimal. Moreover, we find evidence that stochasticity and desynchronization can lead to increased recovery from regulatory perturbation cascades. Our analysis relies on new measures that quantify the tendency of perturbations to spread through a discrete dynamical system. Computing these measures was not feasible using current methodology; thus, we developed a multipurpose CUDA-based simulation tool, which we have made available as the open-source Python library cubewalkers. Based on novel measures and simulations, our results suggest that-contrary to current theory-cell processes are ordered and far from the edge of chaos.

4.
Entropy (Basel) ; 23(5)2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33919107

ABSTRACT

Entropic dynamics is a framework in which the laws of dynamics are derived as an application of entropic methods of inference. Its successes include the derivation of quantum mechanics and quantum field theory from probabilistic principles. Here, we develop the entropic dynamics of a system, the state of which is described by a probability distribution. Thus, the dynamics unfolds on a statistical manifold that is automatically endowed by a metric structure provided by information geometry. The curvature of the manifold has a significant influence. We focus our dynamics on the statistical manifold of Gibbs distributions (also known as canonical distributions or the exponential family). The model includes an "entropic" notion of time that is tailored to the system under study; the system is its own clock. As one might expect that entropic time is intrinsically directional; there is a natural arrow of time that is led by entropic considerations. As illustrative examples, we discuss dynamics on a space of Gaussians and the discrete three-state system.

5.
Biomed Opt Express ; 8(2): 1025-1035, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28271000

ABSTRACT

Core/shell nanofibers are becoming increasingly popular for applications in tissue engineering. Nanofibers alone provide surface topography and increased surface area that promote cellular attachment; however, core/shell nanofibers provide the versatility of incorporating two materials with different properties into one. Such synthetic materials can provide the mechanical and degradation properties required to make a construct that mimics in vivo tissue. Many variations of these fibers can be produced. The challenge lies in the ability to characterize and quantify these nanofibers post fabrication. We developed a non-invasive method for the composition characterization and quantification at the nanoscale level of fibers using Confocal Raman microscopy. The biodegradable/biocompatible nanofibers, Poly (glycerol-sebacate)/Poly (lactic-co-glycolic) (PGS/PLGA), were characterized as a part of a fiber scaffold to quickly and efficiently analyze the quality of the substrate used for tissue engineering.

SELECTION OF CITATIONS
SEARCH DETAIL
...