Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(22): 62508-62521, 2023 May.
Article in English | MEDLINE | ID: mdl-36944834

ABSTRACT

Heterogenous photocatalysis is a suitable alternative for wastewater treatment. The supporting of the solid catalyst in a porous material is suggested to facilitate catalyst recovery and reuse. Here we propose for the first time the evaluation of supporting silver (Ag)-decorated titanium dioxide (TiO2) catalysts on internal and external surfaces of alumina hollow fibers with asymmetric pore size distribution. The produced catalysts were considered for Cr(VI) photoreductions. The ultrasound-assisted process potentialized the distribution of Ag nanoparticles on the TiO2 surface. The loading of Ag nanoparticles at concentrations greater than 5 wt% was necessary to improve the TiO2 activity for Cr(VI) photoreduction. The loading of Ag nanoparticles at 30 wt% improved the Cr(VI) photoreduction of the single TiO2 catalyst from 40.49 ± 0.98 to 55.00 ± 0.83% after 180 min of reaction. Suspended and supported Ag-decorated TiO2 catalysts achieved total Cr(VI) photoreduction after 21 h of reaction. The adjusted reaction rate constant with the externally supported Ag-TiO2 catalyst was 3.57 × 10-3 ± 0.18 × 10-3 min-1. Similar reaction rate constants were achieved with suspended and internally supported catalysts (approximately 2.70 × 10-3 min-1). After 10 sequential reuses, all catalysts presented similar Cr(VI) photoreductions of approximately 66%. Nevertheless, the use of the externally supported catalyst is suggested for Cr(VI) photoreductions due to its superior catalyst activity at least in the first reuse cycles.


Subject(s)
Metal Nanoparticles , Silver , Titanium , Chromium , Catalysis
2.
J Hazard Mater ; 379: 120837, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31276920

ABSTRACT

Here we propose an innovative photocatalytic hybrid system for the reduction of hexavalent chromium (Cr(VI)) from aqueous solutions. The hybrid system was composed of titanium dioxide (TiO2) immobilized in the micro-voids of asymmetric alumina hollow fibers and of the green algae Chlorella vulgaris coated on the outer sponge-like layer of the fiber. The photoreduction of Cr(VI) was systematically studied in different systems: single systems with TiO2 or algae; the synergistic system of algae combined with TiO2; and the proposed hybrid system composed of TiO2 and algae supported in ceramic hollow fibers. Morphological and energy dispersive spectroscopy analyses showed that TiO2 and the algae were properly supported in the substrate (alumina hollow fibers). For an initial Cr(VI) concentration of 10 mg L-1 and dosages of 1 g L-1 of TiO2 and algae, the hybrid system resulted in total Cr(VI) reduction after 16 h of process. Additionally, the efficiency of the hybrid system for Cr(VI) reduction was reduced in only 9% after 5 cycles of reuse and in 42% after 10 cycles of reuse. Thus, micro-structured ceramic hollow fibers impregnated with TiO2 and decorated with the green algae C. vulgaris was efficient for Cr(VI) reductions.


Subject(s)
Ceramics/chemistry , Chlorella vulgaris/growth & development , Chromium/analysis , Mineral Fibers , Titanium/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Catalysis , Chromium/radiation effects , Kinetics , Light , Oxidation-Reduction , Photochemistry , Water Pollutants, Chemical/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...