Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Type of study
Publication year range
1.
J Phys Chem A ; 128(23): 4674-4684, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38815182

ABSTRACT

This work presents a comprehensive study exploring the thermodynamics of the solid phase of a series of phenylimidazoles, encompassing experimental measurements of heat capacity, volatility, and thermal behavior. The influence of successive phenyl group insertions on the imidazole ring on thermodynamic properties and supramolecular behavior was thoroughly examined through the evaluation of 2-phenylimidazole (2-PhI), 4-phenylimidazole (4-PhI), 4,5-diphenylimidazole (4,5-DPhI), and 2,4,5-triphenylimidazole (2,4,5-TPhI). Structural correlations between molecular structure and thermodynamic properties were established. Furthermore, the investigation employed UV-vis spectroscopy and quantum chemical calculations. Additive effects arising from the introduction of phenyl groups were found through the analysis of the solid-liquid and solid-gas equilibria, as well as heat capacities. A good correlation emerged between the thermodynamic properties of sublimation and the molar volume of the unit cell, evident across 2-PhI, 4,5-DPhI, and 2,4,5-TPhI. In contrast to its isomer 2-PhI, 4-PhI exhibited greater cohesive energy due to the stronger N-H···N intermolecular interactions, leading to the disruption of coplanar geometry in the 4-PhI molecules. The observed higher entropies of phase transition (fusion and sublimation) are consistent with the higher structural order observed in the crystalline lattice of 4-PhI.

2.
Langmuir ; 2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38343280

ABSTRACT

Thin films of ionic liquids (ILs) have gained significant attention due to their unique properties and broad applications. Extensive research has focused on studying the influence of ILs' chemical composition and substrate characteristics on the structure and morphology of IL films at the nano- and mesoscopic scales. This study explores the impact of carbon-coated surfaces on the morphology and wetting behavior of a series of alkylimidazolium-based ILs. Specifically, this work investigates the effect of carbon coating on the morphology and wetting behavior of short-chain ([C2C1im][NTf2] and [C2C1im][OTf]) and long-chain ([C8C1im][NTf2] and [C8C1im][OTf]) ILs deposited on indium tin oxide (ITO), silver (Ag), and gold (Au) substrates. A reproducible vapor deposition methodology was utilized for the deposition process. High-resolution scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy were used to analyze the morphological and structural characteristics of the substrates and obtained IL films. The experimental data revealed that the IL films deposited on carbon-coated Au substrates showed minor changes in their morphology compared to that of the films deposited on clean Au surfaces. However, the presence of carbon coatings on the ITO and Ag surfaces led to significant morphological alterations in the IL films. Specifically, for short-chain ILs, the carbon film surface induced 2D growth of the IL film, followed by subsequent island growth. In contrast, for long-chain ILs deposited on carbon surfaces, layer-by-layer growth occurred without island formation, resulting in highly uniform and coalesced IL films. The extent of morphological changes observed in the IL films was found to be influenced by two crucial factors: the thickness of the carbon film on the substrate surface and the amount of IL deposition.

3.
Molecules ; 28(7)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37049791

ABSTRACT

This work reports the formation of silver nanoparticles (AgNPs) by sputter deposition in thin films of three different ionic liquids (ILs) with the same anion (bis(trifluoromethylsulfonyl)imide) and cation (imidazolium), but with different alkyl chain lengths and symmetries in the cationic moiety ([C4C1im][NTf2], [C2C2im][NTf2], and [C5C5im][NTf2]). Ionic liquid (IL) films in the form of microdroplets with different thicknesses (200 to 800 monolayers) were obtained through vacuum thermal evaporation onto glass substrates coated with indium tin oxide (ITO). The sputtering process of the Ag onto the ILs when conducted simultaneously with argon plasma promoted the coalescence of the ILs' droplets and the formation, incorporation, and stabilization of the metallic nanoparticles in the coalesced IL films. The formation/stabilization of the AgNPs in the IL films was confirmed using high-resolution scanning electron microscopy (SEM) and UV-Vis spectroscopy. It was found that the IL films with larger thicknesses (600 and 800 monolayers) were better media for the formation of AgNPs. Among the ILs used, [C5C5im][NTf2] was found to be particularly promising for the stabilization of AgNPs. The use of larger IL droplets as capture media was found to promote a better stabilization of the AgNPs, thereby reducing their tendency to aggregate.

4.
Phys Chem Chem Phys ; 24(21): 13343-13355, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35608141

ABSTRACT

Ionic liquids (ILs) have been widely used for energy storage and conversion devices due to their negligible vapor pressure, high thermal stability, and outstanding interfacial properties. Notably, the interfacial nanostructure and the wettability of thin ionic liquid films on solid surfaces are of utmost relevance in nanosurface science and technology. Herein, a reproducible physical vapor deposition methodology was used to fabricate thin films of four alkylimidazolium bis(trifluoromethylsulfonyl)imide ILs. The effect of the cation alkyl chain length on the wettability of ILs was explored on different surfaces: gold (Au); silver (Ag); indium-tin oxide (ITO). High-resolution scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to evaluate the morphology of the produced micro- and nanodroplets and films. SEM and AFM results revealed an island growth for all the ILs deposited on ITO and Ag surfaces, with a lower minimum free area to promote nucleation (MFAN) in Ag and higher wettability for ILs having larger non-polar domains. The low wettability of ITO by the studied ILs was highlighted. For long-chain ILs, nucleation and growth mechanisms were strongly conditioned by coalescence processes. The results also supported the higher affinity of the ILs to the Au surface. The increase in the length of the cation alkyl chain was found to promote a better film adhesion inducing a 2D growth and higher wetting ability.

5.
J Phys Chem A ; 125(17): 3696-3709, 2021 May 06.
Article in English | MEDLINE | ID: mdl-33890788

ABSTRACT

The thermodynamic properties and band gap energies were evaluated for six ortho- and peri-fused polycyclic aromatic hydrocarbons (PAHs): triphenylene; benzo[a]pyrene; benzo[e]pyrene; perylene; benzo[ghi]perylene; coronene. The standard molar enthalpies of formation in the crystalline state and the standard molar enthalpies of sublimation were measured by high precision combustion calorimetry and Knudsen effusion methodology, respectively. The combination of the molar enthalpies of formation in the crystalline state with the respective enthalpies of sublimation was used to evaluate the energetics of the progressive peri-fusion of the aromatic moieties from triphenylene to coronene aiming to investigate the hypothetical superaromaticity character of coronene. The linear trend of the enthalpy of formation in crystalline and gaseous phases in the series (from benzo[e]pyrene to coronene) is an irrefutable indication of a non-superaromaticity character of coronene. High accurate thermodynamic properties of sublimation (volatility, enthalpy, and entropy of sublimation) were derived by the measurement of vapor pressures as a function of temperature, using a Knudsen/quartz crystal effusion methodology. Furthermore, the π-electronic conjugation of these compounds was explored by evaluation of the optical band gaps along with this series of compounds. The morphology of perylene, benzo[ghi]perylene, and coronene thin films, deposited by physical vapor deposition onto transparent conductive oxide substrates (ITO and FTO), was used to analyze the nucleation and growth mechanisms. The morphologies observed were found to be related to the cohesive energy and entropy of the bulk.

6.
Chemphyschem ; 21(16): 1814-1825, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32579732

ABSTRACT

In this study, a homogeneous thin film growth of pentacene onto indium tin oxide (ITO) coated glass surfaces is explored using a high-resolution and reproducible vapor deposition methodology. Moreover, vacuum thermal evaporation of ionic liquids (ILs) ([C2 C1 im][NTf2 ] and [C2 C1 im][OTF]) onto ITO, gold/palladium (AuPd) and pentacene surfaces were performed. A greater wettability behavior of ILs is observed for surfaces containing AuPd. Sequential and simultaneous depositions of ILs and pentacene were explored. Simultaneous depositions lead to the formation of nanocomposites films, consisting of IL micro- and nanodroplets covered by pentacene layers. Plasma surface treatment was used to induce the ILs droplets coalescence and explore the dynamics and phase separation of the nanocomposites. The [C2 C1 im][OTF] droplets were found to be completely covered with pentacene, which suggests a great affinity between cation-anion pairs and the aromatic moiety. Pentacene films and their nanocomposites with ILs exhibit a typical optical band gap of Egap =1.77 eV, indicating that the nanocomposite phase domains are large enough to behavior as the bulk.

7.
RSC Adv ; 10(20): 11766-11776, 2020 Mar 19.
Article in English | MEDLINE | ID: mdl-35496587

ABSTRACT

The impact of structural differentiation between phenylcarbazoles (PhC, mCP, CBP, TCB) and phenylamines (TPA, BDB, TPB, TDAB) on the phase equilibria, optical spectrum, band gap, and thin-film morphology is evaluated and discussed. The carbazolyl units lead to a lower electronic conjugation contributing to a wide band gap when compared with the diphenylamine analogs. The fusion and sublimation equilibria indicate that entropic contribution is the key factor for the distinguished melting behavior and solid-phase volatility between phenylcarbazole derivatives and phenylamine analogs. The molecular differentiation between the two classes of compounds is not reflected in the crystal packing and intermolecular interactions. However, compared with the diphenylamino groups, the incorporation of carbazolyl moieties contributes to a less flexible molecule. Moreover, the results evidence that intermolecular bonding disruption along the fusion transition is more extensive for phenylamine derivatives. Due to the asymmetric nonplanar structure, mCP is characterized by a ratio of {T g/T m ≈ 3/4} while the more symmetric CBP and TCB molecules display ratios closer to {T g/T m ≈ 2/3}. Vapor-deposited thin films of mCP, CBP, and TCB are amorphous and their morphology is highly dependent on the substrate roughness. The lower flexibility of nonplanar phenylcarbazoles induces the formation of a glassy state due to the harder packing mechanism leading to the lower ability of the crystallization process.

8.
Phys Chem Chem Phys ; 18(24): 16555-65, 2016 Jun 28.
Article in English | MEDLINE | ID: mdl-27273193

ABSTRACT

Tris(8-hydroxyquinolinate) metallic complexes, Mq3, are one of the most important classes of organic semiconductor materials. Herein, the nature of the chemical bond in Mq3 complexes and its implications on their molecular properties were investigated by a combined experimental and computational approach. Various Mq3 complexes, resulting from the alteration of the metal and substitution of the 8-hydroxyquinoline ligand in different positions, were prepared. The mer-/fac-isomerism in Mq3 was explored by FTIR and NMR spectroscopy, evidencing that, irrespective of the substituent, mer- and fac-are the most stable molecular configurations of Al(iii) and In(iii) complexes, respectively. The relative M-ligand bond dissociation energies were evaluated experimentally by electrospray ionization tandem mass spectrometry (ESI-MS-MS), showing a non-monotonous variation along the group (Al > In > Ga). The results reveal a strong covalent character in M-ligand bonding, which allows for through-ligand electron delocalization, and explain the preferred molecular structures of Mq3 complexes as resulting from the interplay between bonding and steric factors. The mer-isomer reduces intraligand repulsions, being preferred for smaller metals, while the fac-isomer is favoured for larger metals where stronger covalent M-ligand bonds can be formed due to more extensive through-ligand conjugation mediated by metal "d" orbitals.

9.
Chemphyschem ; 17(14): 2123-7, 2016 Jul 18.
Article in English | MEDLINE | ID: mdl-27028765

ABSTRACT

The morphology of micro- and nanodroplets and thin films of ionic liquids (ILs) prepared through physical vapor deposition is presented. The morphology of droplets deposited on indium-tin-oxide-coated glass is presented for the extended 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Cn C1 im][Ntf2 ]; n=1-8) series, and the results show the nanostructuration of ILs. The use of in-vacuum energetic particles enhances/increases the nanodroplets mobility/coalescence mechanisms and can be a pathway to the fabrication of thin IL films.

10.
J Phys Chem A ; 119(25): 6676-82, 2015 Jun 25.
Article in English | MEDLINE | ID: mdl-26035212

ABSTRACT

The self-association equilibrium, i.e. formation of noncovalent dimers, in two triphenylamine derivatives, TPD (N,N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine) and mMTDAB (1,3,5-tris[(3-methylphenyl)phenylamino]benzene), in solution was evaluated by (1)H NMR spectroscopy. The gas-phase energetics of the respective dimerization processes was explored by computational quantum chemistry. The results indicate that self-association is significantly more extensive in TPB than in TDAB. It is proposed that this fact helps to explain why TPB presents a stability higher than expected in the liquid phase, which is reflected in a lower melting temperature, a less volatile liquid, and possibly a higher tendency to form a glass. These results highlight the influence of self-association on the phase equilibria and thermodynamic properties of pure organic substances.

11.
J Phys Chem A ; 118(41): 9712-9, 2014 Oct 16.
Article in English | MEDLINE | ID: mdl-25244127

ABSTRACT

Herein we have studied, presented, and analyzed the phase equilibria thermodynamics of a bisphenols (BP-A, BP-E, BP-F, BP-AP, and BP-S) series. In particular, the heat capacities, melting temperatures, and vapor pressures at different temperatures as well as the standard enthalpies, entropies, and Gibbs energies of phase transition (fusion and sublimation) were experimentally determined. Also, we have presented the phase diagrams of each bisphenol derivative and investigated the key parameters related to the thermodynamic stability of the condensed phases. When all the bisphenol derivatives are compared at the same conditions, solids BP-AP and BP-S present lower volatilities (higher Gibbs energy of sublimation) and high melting temperatures due to the higher stability of their solid phases. Solids BP-A and BP-F present similar stabilities, whereas BP-E is more volatile. The introduction of -CH3 groups in BP-F (giving BP-E and BP-A) leads an entropic differentiation in the solid phase, whereas in the isotropic liquids the enthalpic and entropic differentiations are negligible.


Subject(s)
Phase Transition , Phenols/chemistry , Calorimetry, Differential Scanning , Entropy , Models, Chemical , Quantum Theory , Temperature , Thermodynamics , Vapor Pressure
12.
Phys Chem Chem Phys ; 16(28): 14761-70, 2014 Jul 28.
Article in English | MEDLINE | ID: mdl-24919865

ABSTRACT

The self-association equilibrium constants, Kass, for the dimerization of some small oligothiophenes in acetone, acetonitrile and chloroform were measured by (1)H NMR spectroscopy. The gas phase interaction energies for some oligothiophene dimers were determined by computational quantum chemistry. The (1)H NMR results indicate that Kass generally increases with the chain length (the number of thienyl rings, n) and solvent polarity; however, Kass for thiophene (n = 1) was found to be higher than for the bithiophenes (n = 2). The linear oligothiophenes 2,2'-bithiophene and 2,2',5',2''-terthiophene were found to self-associate less than their corresponding nonlinear isomers 3,3'-bithiophene and 3,2',5',3''-terthiophene in solution and in the gas phase. For α-quaterthiophene (n = 4) Kass in solution was found to be smaller than expected. The non-linear dependence of the standard molar Gibbs energy of self-association, ΔassG, on the chain length in solution could be nicely reproduced and related to the conformational entropy change of dimerization. It was observed that the melting properties of oligothiophenes correlate well with their tendency to self-associate, with more self-association leading to increased liquid stability, and thus lower melting temperatures. These results highlight the relevance of self-association in isotropic systems for the correct molecular interpretation of phase equilibria.

13.
J Phys Chem A ; 118(20): 3705-9, 2014 May 22.
Article in English | MEDLINE | ID: mdl-24785354

ABSTRACT

We have studied thermochemical, thermophysical and structural properties of bisphenols A, E, F, and AP. In particular, the standard enthalpies of sublimation and the standard enthalpies of formation in the gas phase at 298.15 K for all these species were experimentally determined. A computational study, through M05-2X density functional theory, of the various species shed light on structural effects and further confirmed, by means of the isodesmic reaction scheme, the excellent consistency of the experimental results. Our results reflect also the fact that energetic substituent effects are transferable from diphenylalkanes to bisphenols.


Subject(s)
Phenols/chemistry , Thermodynamics , Molecular Structure , Quantum Theory
14.
J Phys Chem A ; 115(33): 9249-58, 2011 Aug 25.
Article in English | MEDLINE | ID: mdl-21744775

ABSTRACT

For s-triphenyltriazine, at T = 298.15 K, were measured the standard (p(0) = 10(5) Pa) molar enthalpy of combustion, by static bomb combustion calorimetry, and the standard molar enthalpy, entropy, and Gibbs energy of sublimation by Knudsen/Quartz crystal effusion. A comparison between the entropies of sublimation of s-triphenyltriazine and the isosteric 1,3,5-triphenylbenzene gave a good indication that the higher symmetry of the former contributes significantly to the decrease of its volatility. A computational study at the MP2/cc-pVDZ and B3LYP/6-311++g(d,p) levels of theory was carried out in order to obtain the gas phase geometry, enthalpy, and barriers to internal rotation about the phenyl-triazine bonds. Making use of homodesmotic reaction schemes, a marked stabilization was observed in the molecule of s-triphenyltriazine relative to analogous systems. This result is supported both experimentally and computationally and, combined with a detailed analysis of the literature data concerning the energetics and structure of related compounds, pointed to a significant enthalpic stabilization associated with the exchange of an intramolecular Ar-H···H-Ar close contact by an Ar-H···N(Ar) one. An inspection of the ring-ring torsional profiles in azabenzenes and biphenyls, obtained computationally at the SCS-MP2/cc-pVDZ level, showed that the ring-ring torsions are the dimensions of the potential energy surface (PES) that chiefly determine the energetic differentiation in this class of compounds.

15.
Acta Crystallogr Sect E Struct Rep Online ; 66(Pt 4): o916, 2010 Mar 24.
Article in English | MEDLINE | ID: mdl-21580726

ABSTRACT

The title compound, C(8)H(6)S(2), is disordered [occupancy ratio = 0.839 (2):0.161 (2)] and sits across a centre of symmetry. In the crystal, the mol-ecules are linked by a weak C-H⋯π inter-action.

SELECTION OF CITATIONS
SEARCH DETAIL
...