Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35421598

ABSTRACT

The present study aimed to compare the metabolic effects caused by using copper oxide nanoparticles with two distinct morphologies nanorods and nanosphere. The CuONPs in the form of nanorods were characterized in the order of 500 nm, on a scale of 20, 100, and 500 nm. Meanwhile, the nanosphere CuONPs were characterized in the order of 5 nm, on a 30 nm scale. The analysis of metabolic rate was performed using the closed respirometry technique, specific ammonia excretion, and swimming ability as biomarkers, the physiological effects on Danio rerio were investigated. For the experiments, 88 fish were used, exposed for 24 h at concentrations of 0, 50, 100, and 200 µg/L of copper oxide nanoparticles in the form of nanospheres and nanorods, respectively. The tests carried out with the nanorods demonstrated metabolic alterations in fish, with an increase of 294% and 321% in the metabolic rate at concentrations of 100 µg/L and 200 µg/L, respectively. Furthermore, there was a decrease in specific ammonia excretion by 34% and 83% and in swimming capacity by 34% and 55% at concentrations of 100 and 200 µg/L, respectively, when compared to the control. The tests performed with nanospheres did not show significant changes compared to the control. These experiments showed that different morphological structures of the same copper oxide nanoparticle caused different effects on fish metabolism. It is concluded that the characterization of nanoparticles is essential to understand their effects on fish, since their structural forms can cause different toxic effects on D. rerio.


Subject(s)
Nanoparticles , Zebrafish , Ammonia/toxicity , Animals , Copper/toxicity , Equidae , Nanoparticles/toxicity , Oxides , Swimming , Zebrafish/physiology
2.
J Mater Chem B ; 9(2): 428-439, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33367419

ABSTRACT

The use of hybrid nanostructures based on magneto-luminescent properties is a promising strategy for nano-bio applications and theranostics platforms. In this work, we carried out the synthesis and functionalization of iron oxide nanocubes (IONCs) to obtain multifunctional hybrid nanostructures towards biomedical applications. The IONCs were functionalized with tetraethylorthosilicate, thenoyltrifluoroacetone-propyl-triethoxysilane and europium(iii)-dibenzoylmethane complexes to obtain the materials termed as IOCNCs@SiO2, IONCs@SiO2TTA, IONCs@SiO2TTA-Eu and IONCs@SiO2-TTA-Eu-DBM, respectively. Then, the biological interactions of these nanostructures with red blood cells - RBCs (hemolysis) and human blood plasma (protein corona formation) were evaluated. The XPS spectrocopy and EDS chemical mapping analysis showed that each domain is homogeneously occupied in the hybrid material, with the magnetic core at the center and the luminescent domain on the surface of the hybrid nanomaterial with a core@shell like structure. Futhermore, after each functionalization step, the nanomaterial surface charge drastically changed, with critical impact on RBC lysis and corona formation. While IONCs@SiO2 and IONCs@SiO2-TTA-Eu-DBM showed hemolytic properties in a dose-dependent manner, the IONCs@SiO2TTA-Eu did not present any hemolytic effect up to 300 µg mL-1. Protein corona results showed a pattern of selective adsorption of proteins with each surface of the synthesized hybrid materials. However, as a general result, a suppression of hemolysis after protein corona formation in all tests was verified. Finally, this study provides a solid background for further applications of these hybrid magneto-luminescent materials containing new surface functionalities in the emerging field of medical nanobiotechnology.


Subject(s)
Europium/chemistry , Ferric Compounds/chemistry , Nanotechnology/methods , Protein Corona/chemistry , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...