Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Glycobiology ; 31(10): 1295-1307, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34224566

ABSTRACT

Skeletal muscle has the intrinsic ability to self-repair through a multifactorial process, but many aspects of its cellular and molecular mechanisms are not fully understood. There is increasing evidence that some members of the mammalian ß-galactoside-binding protein family (galectins) are involved in the muscular repair process (MRP), including galectin-3 (Gal-3). However, there are many questions about the role of this protein on muscle self-repair. Here, we demonstrate that endogenous Gal-3 is required for: (i) muscle repair in vivo by using a chloride-barium myolesion mouse model and (ii) mouse primary myoblasts myogenic programming. Injured muscle from Gal-3 knockout mice (GAL3KO) showed persistent inflammation associated with compromised muscle repair and the formation of fibrotic tissue on the lesion site. In GAL3KO mice, osteopontin expression remained high even after 7 and 14 d of the myolesion, while Myoblast differentiation transcription factor (MyoD) and myogenin had decreased their expression. In GAL3KO mouse primary myoblast cell culture, Paired Box 7 (Pax7) detection seems to sustain even when cells are stimulated to differentiation and MyoD expression is drastically reduced. The detection and temporal expression levels of these transcriptional factors appear to be altered in Gal-3-deficient myoblast. Gal-3 expression in wild-type mice for GAL3KO states, both in vivo and in vitro, in sarcoplasm/cytoplasm and myonuclei; as differentiation proceeds, Gal-3 expression is drastically reduced, and its location is confined to the sarcolemma/plasma cell membrane. We also observed a change in the temporal-spatial profile of Gal-3 expression and muscle transcription factors levels during the myolesion. Overall, these results demonstrate that endogenous Gal-3 is required for the skeletal muscle repair process.


Subject(s)
Galectin 3/metabolism , Muscle, Skeletal/metabolism , Animals , Barium Compounds/administration & dosage , Barium Compounds/pharmacology , Chlorides/administration & dosage , Chlorides/pharmacology , Galectin 3/deficiency , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology
2.
Glycobiology ; 18(11): 842-50, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18723690

ABSTRACT

Muscle degenerative diseases such as Duchenne Muscular Dystrophy are incurable and treatment options are still restrained. Understanding the mechanisms and factors responsible for muscle degeneration and regeneration will facilitate the development of novel therapeutics. Several recent studies have demonstrated that Galectin-1 (Gal-1), a carbohydrate-binding protein, induces myoblast differentiation and fusion in vitro, suggesting a potential role for this mammalian lectin in muscle regenerative processes in vivo. However, the expression and localization of Gal-1 in vivo during muscle injury and repair are unclear. We report the expression and localization of Gal-1 during degenerative-regenerative processes in vivo using two models of muscular dystrophy and muscle injury. Gal-1 expression increased significantly during muscle degeneration in the murine mdx and in the canine Golden Retriever Muscular Dystrophy animal models. Compulsory exercise of mdx mouse, which intensifies degeneration, also resulted in sustained Gal-1 levels. Furthermore, muscle injury of wild-type C57BL/6 mice, induced by BaCl(2) treatment, also resulted in a marked increase in Gal-1 levels. Increased Gal-1 levels appeared to localize both inside and outside the muscle fibers with significant extracellular Gal-1 colocalized with infiltrating CD45(+) leukocytes. By contrast, regenerating muscle tissue showed a marked decrease in Gal-1 to baseline levels. These results demonstrate significant regulation of Gal-1 expression in vivo and suggest a potential role for Gal-1 in muscle homeostasis and repair.


Subject(s)
Galectin 1/metabolism , Muscle, Skeletal/injuries , Muscle, Skeletal/metabolism , Muscular Dystrophy, Animal/metabolism , Animals , Dogs , Female , Fluorescent Antibody Technique , Galectin 1/analysis , Leukocyte Common Antigens/immunology , Leukocyte Common Antigens/metabolism , Leukocytes/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Models, Animal , Muscular Dystrophy, Animal/chemically induced , Regeneration/physiology
3.
Arch Insect Biochem Physiol ; 67(2): 97-106, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18076110

ABSTRACT

Farnesoic acid O-methyl transferase (FAMeT) is the enzyme that catalyzes the formation of methyl farnesoate (MF) from farnesoic acid (FA) in the biosynthetic pathway of juvenile hormone (JH). This work reports the cloning, sequencing, and expression of FAMeT gene from the stingless bee Melipona scutellaris (MsFAMeT). The MsFAMeT in silico analysis showed that greatest sequence similarity is found in Apis mellifera and other insects, while relatively less similarity is shown in crustaceans. Evidence of alternative splicing of a 27 nucleotide (nt) microexon explains the presence of the detected isoforms, 1 and 2. The expression analysis of the two isoforms showed a marked difference when castes were compared, suggesting that they could be involved differently in the JH metabolism in M. scutellaris, providing new insights for the comprehension of female plasticity.


Subject(s)
Bees/physiology , Gene Expression Regulation, Developmental/physiology , Methyltransferases/biosynthesis , Methyltransferases/genetics , Amino Acid Sequence , Animals , Base Sequence , Bees/classification , Bees/enzymology , Bees/genetics , Female , Gene Expression Regulation, Developmental/genetics , Isoenzymes/biosynthesis , Isoenzymes/chemistry , Isoenzymes/genetics , Larva/physiology , Methyltransferases/chemistry , Molecular Sequence Data , Pupa/physiology , Sequence Alignment , Sesquiterpenes/metabolism
4.
Cancer Res ; 65(5): 1693-9, 2005 Mar 01.
Article in English | MEDLINE | ID: mdl-15753364

ABSTRACT

A detailed genome mapping analysis of 213,636 expressed sequence tags (EST) derived from nontumor and tumor tissues of the oral cavity, larynx, pharynx, and thyroid was done. Transcripts matching known human genes were identified; potential new splice variants were flagged and subjected to manual curation, pointing to 788 putatively new alternative splicing isoforms, the majority (75%) being insertion events. A subset of 34 new splicing isoforms (5% of 788 events) was selected and 23 (68%) were confirmed by reverse transcription-PCR and DNA sequencing. Putative new genes were revealed, including six transcripts mapped to well-studied chromosomes such as 22, as well as transcripts that mapped to 253 intergenic regions. In addition, 2,251 noncoding intronic RNAs, eventually involved in transcriptional regulation, were found. A set of 250 candidate markers for loss of heterozygosis or gene amplification was selected by identifying transcripts that mapped to genomic regions previously known to be frequently amplified or deleted in head, neck, and thyroid tumors. Three of these markers were evaluated by quantitative reverse transcription-PCR in an independent set of individual samples. Along with detailed clinical data about tumor origin, the information reported here is now publicly available on a dedicated Web site as a resource for further biological investigation. This first in silico reconstruction of the head, neck, and thyroid transcriptomes points to a wealth of new candidate markers that can be used for future studies on the molecular basis of these tumors. Similar analysis is warranted for a number of other tumors for which large EST data sets are available.


Subject(s)
Gene Expression Profiling , Genetic Markers , Head and Neck Neoplasms/genetics , RNA, Messenger/genetics , Thyroid Neoplasms/genetics , Transcription, Genetic , Alternative Splicing , Expressed Sequence Tags , Head and Neck Neoplasms/metabolism , Humans , Larynx/metabolism , Mouth/metabolism , Pharynx/metabolism , Polymerase Chain Reaction , Protein Isoforms , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Thyroid Gland/metabolism , Thyroid Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...