Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 355: 124018, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38697252

ABSTRACT

Fe and N co-doped walnut shell biochar (Fe,N-BC) was prepared through a one-pot pyrolysis procedure by using walnut shells as feedstocks, melamine as the N source, and iron (III) chloride as the Fe source. Moreover, pristine biochar (BC), nitrogen-doped biochar (N-BC), and α-Fe2O3-BC were synthesized as controls. All the prepared materials were characterized by different techniques and were used for the activation of peroxymonosulfate (PMS) for the degradation of sulfamethoxazole (SMX). A very high degradation rate for SMX (10 mg/L) was achieved with Fe,N-BC/PMS (0.5 min-1), which was higher than those for BC/PMS (0.026 min-1), N-BC/PMS (0.038 min-1), and α-Fe2O3-BC/PMS (0.33 min-1) under the same conditions. This is mainly due to the formation of Fe3C and iron oxides, which are very reactive for the activation of PMS. In the next step, Fe,N-BC was employed for the formation of a composite membrane structure by a liquid-induced phase inversion process. The synthesized ultrafiltration membrane not only exhibited high separation performance for humic acid sodium salt (HA, 98%) but also exhibited improved self-cleaning properties when applied for rhodamine B (RhB) filtration combined with a PMS solution cleaning procedure. Scavenging experiments revealed that 1O2 was the predominant species responsible for the degradation of SMX. The transformation products of SMX and possible degradation pathways were also identified. Furthermore, the toxicity assessment revealed that the overall toxicity of the intermediate was lower than that of SMX.


Subject(s)
Charcoal , Juglans , Peroxides , Sulfamethoxazole , Juglans/chemistry , Sulfamethoxazole/chemistry , Charcoal/chemistry , Peroxides/chemistry , Iron/chemistry , Nitrogen/chemistry , Water Pollutants, Chemical/chemistry
2.
Sci Total Environ ; 899: 165535, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37453707

ABSTRACT

In this study, novel walnut shell biochar-nano zero-valent iron nanocomposites (WSBC-nZVI) were synthesized using a combined pyrolysis/reduction process. WSBC-nZVI displayed a high removal efficiency (86 %) for carbamazepine (CBZ) compared with walnut shell biochar (70 %) and nano zero-valent iron (76 %) in the presence of persulfate (PS) (0.5 g/L catalyst, 10 mg/L CBZ, 1 mM persulfate). Subsequently, WSBC-nZVI was applied for the fabrication of the membrane using a phase inversion method. The membrane demonstrated an excellent removal efficiency of 91 % for CBZ in a dead-end system (2 mg/L CBZ, 1 mM persulfate). In addition, the effect of various operating conditions on the degradation efficiency in the membrane/persulfate system was investigated. The optimum pH was close to neutral, and an increase in CBZ concentration from 1 mg/L to 10 mg/L led to a drop in removal efficiency from 100 % to 24 %. The degradation mechanisms indicated that oxidative species, including 1O2, OH, SO4-, and O2-, all contribute to the degradation of CBZ, while the role of 1O2 is highlighted. The CBZ degradation products were also investigated, and the possible pathways and the predicted toxicity of intermediates were proposed. Furthermore, the practical use of the membrane was validated by the treatment of real wastewater.


Subject(s)
Juglans , Nanocomposites , Water Pollutants, Chemical , Iron , Water Pollutants, Chemical/analysis
3.
Nanomaterials (Basel) ; 12(20)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36296751

ABSTRACT

Zinc oxide nanoparticles (ZnO NPs) are one of the most used nanoparticles due to their unique physicochemical and biological properties. There is, however, a growing concern about their negative impact on male reproductive health. Therefore, in the present study, two different strategies were used to evaluate the recovery ability of spermatogonia cells from the first stage of spermatogenesis (GC-1 spg cell line) after being exposed to a cytotoxic concentration of ZnO NPs (20 µg/mL) for two different short time periods, 6 and 12 h. The first strategy was to let the GC-1 cells recover after ZnO NPs exposure in a ZnO NPs-free medium for 4 days. At this phase, cell viability assays were performed to evaluate whether this period was long enough to allow for cell recovery. Exposure to ZnO NPs for 6 h and 12 h induced a decrease in viability of 25% and 41%, respectively. However, the recovery period allowed for an increase in cell viability from 16% to 25% to values as high as 91% and 84%. These results strongly suggest that GC-1 cells recover, but not completely, given that the cell viability does not reach 100%. Additionally, the impact of a synthetic chalcone (E)-3-(2,6-dichlorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (1) to counteract the reproductive toxicity of ZnO NPs was investigated. Different concentrations of chalcone 1 (0-12.5 µM) were used before and during exposure of GC-1 cells to ZnO NPs to mitigate the damage induced by NPs. The protective ability of this compound was evaluated through viability assays, levels of DNA damage, and cytoskeleton dynamics (evaluating the acetylated α-tubulin and ß-actin protein levels). The results indicated that the tested concentrations of chalcone 1 can attenuate the genotoxicity induced by ZnO NPs for shorter exposure periods (6 h). Chalcone 1 supplementation also increased cell viability and stabilized the microtubules. However, the antioxidant potential of this compound remains to be elucidated. In conclusion, this work addressed the main cytotoxic effects of ZnO NPs on a spermatogonia cell line and analyzed two different strategies to mitigate this damage, which represent a significant contribution to the field of male fertility.

4.
Molecules ; 27(10)2022 May 10.
Article in English | MEDLINE | ID: mdl-35630526

ABSTRACT

For applications related to the photocatalytic degradation of environmental contaminants, engineered nanomaterials (ENMs) must demonstrate not only a high photocatalytic potential, but also a low tendency to agglomeration, along with the ability to be easily collected after use. In this manuscript, a two-step process was implemented for the synthesis of ZnO, ZnO/Bentonite and the magnetic ZnO/γ-Fe2O3/Bentonite nanocomposite. The synthesized materials were characterized using various techniques, and their performance in the degradation of pharmaceutical active compounds (PhACs), including ciprofloxacin (CIP), sulfamethoxazole (SMX), and carbamazepine (CBZ) was evaluated under various operating conditions, namely the type and dosage of the applied materials, pH, concentration of pollutants, and their appearance form in the medium (i.e., as a single pollutant or as a mixture of PhACs). Among the materials studied, ZnO/Bentonite presented the best performance and resulted in the removal of ~95% of CIP (5 mg/L) in 30 min, at room temperature, near-neutral pH (6.5), ZnO/Bentonite dosage of 0.5 g/L, and under solar light irradiation. The composite also showed a high degree of efficiency for the simultaneous removal of CIP (~98%, 5 mg/L) and SMX (~97%, 5 mg/L) within 30 min, while a low degradation of ~5% was observed for CBZ (5 mg/L) in a mixture of the three PhACs. Furthermore, mechanistic studies using different types of scavengers revealed the formation of active oxidative species responsible for the degradation of CIP in the photocatalytic system studied with the contribution of h+ (67%), OH (18%), and ·O2- (10%), and in which holes (h+) were found to be the dominant oxidative species.


Subject(s)
Bentonite , Zinc Oxide , Carbamazepine , Catalysis , Pharmaceutical Preparations , Sulfamethoxazole , Sunlight , Zinc Oxide/chemistry
5.
Sci Total Environ ; 825: 153871, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35176370

ABSTRACT

The present study investigates the kinetics and mechanisms of carbamazepine (CBZ) degradation using a novel UV/iodate (IO3-) system for the first time and explores the influence of process conditions on its degradation. UV/IO3- showed high degradation efficiencies in a wide range of pHs, especially under neutral and acidic conditions, indicating that the system can be considered as a promising method to deal with effluents under various pH conditions. Radical scavenging experiments show that both iodine radicals (IO, IO2 and IO3) and hydroxyl radicals play an important role in CBZ degradation. Furthermore, the combination of UV/IO3- with TiO2 was studied to explore the potential of the addition of IO3- to improve the efficiency of the conventional TiO2 photocatalytic system. Scavenging experiments indicated that iodine radicals (IO, IO2 and IO3) were mainly involved in the degradation of CBZ in the UV/IO3-/TiO2 system, and the reaction mechanism equations were proposed for the first time for the studied UV/IO3-/TiO2 system. Several degradation products and four possible pathways of CBZ degradation were also elucidated using ultra-high-performance liquid chromatography in combination with a quadrupole time-of-flight mass spectrometer (Q-TOF MS). Respirometric tests indicated that the treatment has a positive impact on biomass behavior during subsequent biological purification, highlighting that the developed IO3--assisted AOPs are eco-friendly.


Subject(s)
Iodine , Water Pollutants, Chemical , Carbamazepine/analysis , Iodates , Iodides , Kinetics , Titanium/chemistry , Water , Water Pollutants, Chemical/analysis
6.
Molecules ; 13(11): 2729-39, 2008 Nov 01.
Article in English | MEDLINE | ID: mdl-18978702

ABSTRACT

In our previous work we described the preparation and characterization of spray dried hydroxyapatite micro granules loaded with 5-fluorouracil (5-FU). These loaded particles are used as a model drug delivery system (DDS). In this study we examined the in vitro response of two cell lines derived from different tissues to 5-FU loaded granules (LG). Both cell lines, either L929 cells of a mouse fibroblast lineage or cells originating from a rat osteosarcoma (ROS 17/2.8) showed a dose dependent decrease in cell proliferation in response to 5-FU-, either dissolved in the culture medium or loaded onto particles. The response of the two cell lines to loaded and nonloaded particles was different. The effect of LG and of a corresponding concentration of free 5-FU was practically the same for the ROS 17/2.8 cells indicating that ROS 17/2.8 cells were not affected by the carrier material. In contrast, L929 cells showed a slight decrease in cell proliferation also in the presence of granules not loaded with 5-FU. This is thought to be attributed to the inhibition of mitogenesis by phosphocitrates, already demonstrated in fibroblasts. In summary, we found that the loaded 5-FU kept its effectivity after the spray drying process and that the response towards the granules varied with cell type. This is the first step towards a tissue specific DDS.


Subject(s)
Cell Proliferation/drug effects , Durapatite/chemistry , Fluorouracil/pharmacology , Animals , Antimetabolites, Antineoplastic/chemistry , Antimetabolites, Antineoplastic/pharmacology , Cell Line , Cell Line, Tumor , Cell Lineage , Dose-Response Relationship, Drug , Fibroblasts/cytology , Fibroblasts/drug effects , Fluorouracil/chemistry , Mesoderm/cytology , Mice , Microscopy, Electron, Scanning , Microspheres , Osteosarcoma/pathology , Rats
7.
J Colloid Interface Sci ; 318(2): 210-6, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-17996882

ABSTRACT

Hydroxyapatite (HAP) particles with different morphologies were precipitated from homogeneous calcium/citrate/phosphate solutions at physiological temperature. Small variations of the starting solution pH in the range 7.4

Subject(s)
Citric Acid/chemistry , Durapatite/chemistry , Nanoparticles/chemistry , Calcium/chemistry , Hydrogen-Ion Concentration , Microscopy, Electron, Scanning , Particle Size , Phosphates/chemistry , Solutions/chemistry , Spectroscopy, Fourier Transform Infrared , Surface Properties , Temperature , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...