Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Front Chem ; 12: 1400445, 2024.
Article in English | MEDLINE | ID: mdl-38812614

ABSTRACT

Electrophilic aromatic nitrations are used for the preparation of a variety of synthetic products including dyes, agrochemicals, high energy materials, fine chemicals and pharmaceuticals. Traditional nitration methods use highly acidic and corrosive mixed acid systems which present a number of drawbacks. Aside from being hazardous and waste-producing, these methods also often result in poor yields, mostly due to low regioselectivity, and limited functional group tolerance. As a consequence, there is a need for effective and environmentally benign methods for electrophilic aromatic nitrations. In this work, the major aim was to develop reaction protocols that are more environmentally benign while also considering safety issues. The reactions were carried out in dilute aqueous nitric acid, and a broad range of experimental variables, such as acid concentration, temperature, time, and activation method, were investigated. Mesitylene and m-xylene were used as test substrates for the optimization. While the optimized reactions generally occurred at room temperature without any activation under additional solvent-free conditions, slight adjustments in acid concentration, stoichiometric equivalents, and volume were necessary for certain substrates, in addition to the activation. The substrate scope of the process was also investigated using both activated and deactivated aromatics. The concentration of the acid was lowered when possible to improve upon the safety of the process and avoid over-nitration. With some substrates we compared traditional and nontraditional activation methods such as ultrasonic irradiation, microwave and high pressure, respectively, to achieve satisfactory yields and improve upon the greenness of the reaction while maintaining short reaction times.

2.
Comput Biol Med ; 164: 107272, 2023 09.
Article in English | MEDLINE | ID: mdl-37515873

ABSTRACT

BACKGROUND: The shift towards minimally invasive surgery is associated with a significant reduction of tactile information available to the surgeon, with compensation strategies ranging from vision-based techniques to the integration of sensing concepts into surgical instruments. Tactile information is vital for palpation tasks such as the differentiation of tissues or the characterisation of surfaces. This work investigates a new sensing approach to derive palpation-related information from vibration signals originating from instrument-tissue-interactions. METHODS: We conducted a feasibility study to differentiate three non-animal and three animal tissue specimens based on palpation of the surface. A sensor configuration was mounted at the proximal end of a standard instrument opposite the tissue-interaction point. Vibro-acoustic signals of 1680 palpation events were acquired, and the time-varying spectrum was computed using Continuous-Wavelet-Transformation. For validation, nine spectral energy-related features were calculated for a subsequent classification using linear Support Vector Machine and k-Nearest-Neighbor. RESULTS: Indicators derived from the vibration signal are highly stable in a set of palpations belonging to the same tissue specimen, regardless of the palpating subject. Differences in the surface texture of the tissue specimens reflect in those indicators and can serve as a basis for differentiation. The classification following a supervised learning approach shows an accuracy of >93.8% for the three-tissue classification tasks and decreases to 78.8% for a combination of all six tissues. CONCLUSIONS: Simple features derived from the vibro-acoustic signals facilitate the differentiation between biological tissues, showing the potential of the presented approach to provide information related to the interacting tissue. The results encourage further investigation of a yet little-exploited source of information in minimally invasive surgery.


Subject(s)
Acoustics , Touch , Vibration , Palpation , Minimally Invasive Surgical Procedures
3.
Orthopadie (Heidelb) ; 52(3): 214-221, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36820851

ABSTRACT

In the last decades total hip arthroplasty (THA) has become a standard procedure with many benefits but also a few still unsolved complications, which can lead to surgical revision in 19-23% of cases. Thus, aseptic loosening and metal hypersensitivity remain challenges. The phenomenon of wear debris causes chronic inflammation, which produces osteolysis and aseptic loosening. Wear debris promotes osteoclast production and inhibits osteoblasts by secretion of pro-inflammatory cytokines. Micro-abrasions can be induced by abrasive, adhesive and fatigue wear and cause a liberation of metal ions, which lead to another immune response elicited mostly by macrophages. Another reaction in the neocapsule can be a type IV hypersensitivity reaction to various alloys, containing metals such as nickel, cobalt and chromium. Patch testing and the lymphocyte transformation test (LTT) are not the best diagnostic possibilities to exclude a postoperative hypersensitivity reaction, because of the different alignment of the epicutaneous cells compared to the periprosthetic deep tissue. This hypersensitivity reaction is mostly induced by cytokines, which are secreted by macrophages rather than lymphocytes. In cell cultures and in animal studies, multipotent mesenchymal stem cells (MSC) have been shown to play a role in improving initial implant integration, to limit periprosthetic osteolysis and also to reconstitute peri-implant bone stock during implant revision. Thus, MSC might be used in the future to prolong the durability of THA. A better understanding of the interactions between primary chronic inflammation, corrosion, osteolysis and hypersensitivity is mandatory to develop new therapeutic strategies, aiming at the reduction of the incidence of implant failures. In this article the underlying immunological mechanisms to aseptic loosening are presented.


Subject(s)
Arthroplasty, Replacement, Hip , Hypersensitivity , Osteolysis , Animals , Arthroplasty, Replacement, Hip/adverse effects , Lymphocyte Activation , Osteolysis/etiology , Metals , Cytokines , Inflammation/complications , Hypersensitivity/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...