Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
J Chem Neuroanat ; 116: 101989, 2021 10.
Article in English | MEDLINE | ID: mdl-34126223

ABSTRACT

In a recent paper, we described the distribution of Nitric oxide (NO) in the diencephalon of the rock cavy (Kerodon rupestris). This present paper follows this work, showing the distribution of NO synthesizing neurons in the rock cavy's brainstem. For this, we used immunohistochemistry against the neuronal form of nitric oxide synthase (NOS) and NADPH diaphorase histochemistry. In contrast to the diencephalon in the rock cavy, where the NOS neurons were seen to be limited to some nuclei in the thalamus and hypothalamus, the distribution of NOS in the brainstem is widespread. Neurons immunoreactive to NOS (NOS-ir) were seen as rostral as the precommissural nuclei and as caudal as the caudal and gelatinous parts of the spinal trigeminal nucleus. Places such as the raphe nuclei, trigeminal complex, superior and inferior colliculus, oculomotor complex, periaqueductal grey matter, solitary tract nucleus, laterodorsal tegmental nucleus, pedunculopontine tegmental, and other nuclei of the reticular formation are among the locations with the most NOS-ir neurons. This distribution is similar, but with some differences, to those described for other rodents, indicating that NO also has an important role in rock cavy's physiology.


Subject(s)
Brain Stem/metabolism , Nitrergic Neurons/metabolism , Nitric Oxide Synthase/metabolism , Nitric Oxide/metabolism , Animals , Brain Stem/chemistry , Brain Stem/cytology , Female , Guinea Pigs , Male , Nitrergic Neurons/chemistry , Nitric Oxide/analysis , Nitric Oxide Synthase/analysis , Species Specificity
2.
Int. j. morphol ; 36(3): 1049-1056, Sept. 2018. graf
Article in English | LILACS | ID: biblio-954229

ABSTRACT

Mesenchymal cells (MCs) exhibit great regenerative potential due to their intrinsic properties and ability to restore tissue function, either directly through transdifferentiation or indirectly through paracrine effects. This study aimed to evaluate morphometric and phenotypic changes in MCs grown with facial nerve-conditioned medium in the presence or absence of fibroblast growth factor 2 (FGF-2). For quantitative phenotypic analysis, the expression of GFAP, OX-42, MAP-2, β-tubulin III, NeuN, and NF-200 was analyzed by immunocytochemistry. Cells cultured with facial nerve-conditioned medium in the presence of FGF-2 expressed GFAP, OX-42, MAP-2, β-tubulin III, NeuN, and NF-200. On average, the area and perimeter of GFAP-positive cells were higher in the group cultured with facial nerve-conditioned medium compared to the group cultured with conditioned medium and FGF-2 (p=0.0001). This study demonstrated the plasticity of MCs for neuronal and glial lineages and opens up new research perspectives in cell therapy and trans.differentiation.


Las células mesenquimales (CM) exhiben un gran potencial regenerativo debido a sus propiedades intrínsecas y la capacidad de restaurar la función del tejido, ya sea directamente, a través de la transdiferenciación, o indirectamente, a través de efectos parácrinos. Este estudio tuvo como objetivo evaluar los cambios morfométricos y fenotípicos en CM cultivadas con medio condicionado por nervio facial en presencia o ausencia de factor de crecimiento de fibroblastos 2 (FGF-2). Para el análisis fenotípico cuantitativo, se analizó la expresión de GFAP, OX-42, MAP-2, β-tubulina III, NeuN y NF-200 mediante inmunocitoquímica. Las células cultivadas con medio condicionado por el nervio facial en presencia de FGF-2 expresaban GFAP, OX-42, MAP-2, β-tubulina III, NeuN y NF-200. En promedio, el área y el perímetro de las células positivas para GFAP fueron mayores en el grupo cultivado con medio condicionado por el nervio facial en comparación con el grupo cultivado con medio acondicionado y FGF-2 (p = 0,0001). Este estudio demostró la plasticidad de CM para linajes neuronales y gliales y abre nuevas perspectivas de investigación en terapia celular y transdiferenciación.


Subject(s)
Animals , Male , Rats , Bone Marrow , Fibroblast Growth Factor 2/metabolism , Facial Nerve Injuries , Mesenchymal Stem Cells/metabolism , Phenotype , Immunohistochemistry , Cells, Cultured , Rats, Wistar , Cell Transdifferentiation
3.
Brain Res ; 1685: 60-78, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29438673

ABSTRACT

Nitric oxide (NO) is a highly soluble and membrane-permeable neurotransmitter, so it does not need to be packed in vesicles or have a membrane receptor. In the nervous system, NO is synthesized by the neuronal form of the nitric oxide synthase (NOS) enzyme and has been considered as a local neurotransmitter. NOS distribution is widespread in the nervous system of various vertebrate species, which may explain its participation in many functions such as memory, blood pressure regulation and sexual behavior. Here we used immunohistochemistry against NOS and NADPH diaphorase histochemistry to map the distribution of NO in the diencephalon of the rock cavy (Kerodon rupestris), a rodent endemic to the Brazilian Northeast. Rock cavy has crepuscular habits and is adapted to ecological conditions such as heat and scarcity of water and food. This study found that NOS distribution was more concentrated in the hypothalamus of this animal. Among the hypothalamic nuclei, the median preoptic, supraoptic, paraventricular nucleus of the hypothalamus, ventromedial nucleus of the hypothalamus, ventral and dorsal premammillary nucleus, supramammillary nucleus, lateral mammillary nucleus and dorsal hypothalamic nucleus had the largest collections of NOS immunoreactive (NOS-ir) neurons. Some nuclei of the thalamus and epithalamus such as the paraventricular nucleus of the thalamus, the ventral lateral geniculate nucleus, the medial geniculate nucleus and the lateral habenula showed NOS-ir neurons. This distribution is similar to that described in other rodents, indicating that NO also has an important role in rock cavy's physiology.


Subject(s)
Hypothalamus/metabolism , Neurons/metabolism , Nitric Oxide Synthase Type I/metabolism , Nitric Oxide Synthase/metabolism , Animals , Female , Geniculate Bodies/metabolism , Guinea Pigs , Immunohistochemistry/methods , Male , NADPH Dehydrogenase/metabolism , Nitric Oxide/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Preoptic Area/metabolism
4.
J Chem Neuroanat ; 90: 57-69, 2018 07.
Article in English | MEDLINE | ID: mdl-29277705

ABSTRACT

The rock cavy (Kerodon rupestris) is a crepuscular Hystricomorpha rodent that has been used in comparative analysis of retinal targets, but its retinal organization remains to be investigated. In order to better characterize its visual system, the present study analyzed neurochemical features related to the topographic organization of catecholaminergic cells and ganglion cells, as well the distribution of calcium-binding proteins in the outer and inner retina. Retinal sections and/or wholemounts were processed using tyrosine hydroxylase (TH), GABA, calbindin, parvalbumin and calretinin immunohistochemistry or Nissl staining. Two types of TH-immunoreactive (TH-IR) cells were found which differ in soma size, dendritic arborization, intensity of TH immunoreactivity and stratification pattern in the inner plexiform layer. The topographic distribution of all TH-IR cells defines a visual streak along the horizontal meridian in the superior retina. The ganglion cells are also distributed in a visual streak and the visual acuity estimated considering their peak density is 4.13 cycles/degree. A subset of TH-IR cells express GABA or calbindin. Calretinin is abundant in most of retinal layers and coexists with calbindin in horizontal cells. Parvalbumin is less abundant and expressed by presumed amacrine cells in the INL and some ganglion cells in the GCL. The topographic distribution of TH-IR cells and ganglion cells in the rock cavy retina indicate a suitable adaptation for using a broad extension of its inferior visual field in aspects that involve resolution, adjustment to ambient light intensity and movement detection without specialized eye movements.


Subject(s)
Calcium-Binding Proteins/metabolism , Retina/cytology , Retina/metabolism , Retinal Ganglion Cells/cytology , Retinal Ganglion Cells/metabolism , Rodentia/anatomy & histology , Animals , Catecholamines/metabolism , Female , Male
5.
Neurosci Lett ; 616: 43-8, 2016 Mar 11.
Article in English | MEDLINE | ID: mdl-26320023

ABSTRACT

Neurotrophic factors and peripheral nerves are known to be good substrates for bridging CNS trauma. The involvement of fibroblast growth factor-2 (FGF-2) activation in the dorsal root ganglion (DRG) was examined following spinal cord injury in the rat. We evaluated whether FGF-2 increases the ability of a sciatic nerve graft to enhance neuronal plasticity, in a gap promoted by complete transection of the spinal cord. The rats were subjected to a 4mm-long gap at low thoracic level and were repaired with saline (Saline or control group, n=10), or fragment of the sciatic nerve (Nerve group, n=10), or fragment of the sciatic nerve to which FGF-2 (Nerve+FGF-2 group, n=10) had been added immediately after lesion. The effects of the FGF-2 and fragment of the sciatic nerve grafts on neuronal plasticity were investigated using choline acetyl transferase (ChAT)-immunoreactivity of neurons in the dorsal root ganglion after 8 weeks. Preservation of the area and diameter of neuronal cell bodies in dorsal root ganglion (DRG) was seen in animals treated with the sciatic nerve, an effect enhanced by the addition of FGF-2. Thus, the addition of exogenous FGF-2 to a sciatic nerve fragment grafted in a gap of the rat spinal cord submitted to complete transection was able to improve neuroprotection in the DRG. The results emphasized that the manipulation of the microenvironment in the wound might amplify the regenerative capacity of peripheral neurons.


Subject(s)
Choline O-Acetyltransferase/metabolism , Fibroblast Growth Factor 2/pharmacology , Ganglia, Spinal/metabolism , Neurons/enzymology , Sciatic Nerve/transplantation , Spinal Cord Injuries/metabolism , Animals , Cell Body/pathology , Fibroblast Growth Factor 2/metabolism , Male , Neuronal Plasticity , Neurons/pathology , Rats, Wistar , Spinal Cord Injuries/pathology , Spinal Cord Injuries/therapy
6.
Brain Res ; 1586: 99-108, 2014 Oct 24.
Article in English | MEDLINE | ID: mdl-25152460

ABSTRACT

The thalamic midline/intralaminar complex is part of the higher-order thalamus, which receives little sensory input, and instead forms extensive cortico-thalamo-cortical pathways. The midline thalamic nuclei connect with the medial prefrontal cortex and the medial temporal lobe. On the other hand, the intralaminar nuclei connect with the fronto-parietal cortex. Taking into account this connectivity pattern, it is not surprising that the midline/intralaminar complex has been implicated in a broad variety of cognitive functions, including memory process, attention and orientation, and also reward-based behavior. Serotonin (5-HT) is a neurotransmitter that exerts different post-synaptic roles. Serotonergic neurons are almost entirely restricted to the raphe nuclei and the 5-HT fibers are distributed widely throughout the brain, including the midline/intralaminar complex. The present study comprises a detailed description of the morphologic features and semiquantitative analysis of 5-HT fibers distribution in the midline/intralaminar complex in the rock cavy, a typical rodent of the Northeast region of Brazil, which has been used by our group as an anatomical model to expand the comprehension about phylogeny on the nervous system. The 5-HT fibers in the midline/intralaminar nuclei of the rock cavy were classified into three distinct categories: (1) beaded fibers, which are relatively fine and endowed with large varicosities; (2) fine fibers, with thin axons and small varicosities uniformly distributed in whole axon; and (3) stem axons, showing thick non-varicose axons. Moreover, the density of 5-HT fibers is variable among the analyzed nuclei. On the basis of this diversity of the morphological fibers and the differential profile of optical density among the midline/intralaminar nuclei of the rock cavy, we conclude that the serotonergic system uses a diverse morphologic apparatus to exert a large functional repertory in the midline/intralaminar thalamic nuclei.


Subject(s)
Intralaminar Thalamic Nuclei/anatomy & histology , Midline Thalamic Nuclei/anatomy & histology , Nerve Fibers/metabolism , Serotonin/metabolism , Analysis of Variance , Animals , Guinea Pigs
7.
Psychol. neurosci. (Impr.) ; 3(2): 217-228, July-Dec. 2010. ilus
Article in English | LILACS, Index Psychology - journals | ID: lil-604522

ABSTRACT

All mammal behaviors and functions exhibit synchronization with environmental rhythms. This is accomplished through an internal mechanism that generates and modulates biological rhythms. The circadian timing system, responsible for this process, is formed by connected neural structures. Pathways receive and transmit environmental cues to the central oscillator, the hypothalamic suprachiasmatic nucleus, which mediates physiological and behavioral alterations. The suprachiasmatic nucleus has three major inputs: the retinohypothalamic tract (a direct projection from the retina), the geniculohypothalamic tract (an indirect photic projection originating in the intergeniculate leaflet), and a dense serotonergic plexus from the raphe nuclei. The serotonergic pathway, a source of non-photic cues to the suprachiasmatic nucleus, modulates its activity. The importance of raphe nuclei in circadian rhythms, especially in photic responses, has been demonstrated in many studies. Serotonin is the raphe neurotransmitter that triggers phase shifts, inhibits light-induced phase-shifts, and plays a role in controlling the sleep-wake cycle. All data to date have demonstrated the importance of the raphe, through serotonergic afferents, in adjusting circadian rhythms and must therefore be considered a component of the circadian timing system. The aim of this paper is to review the literature addressing the involvement of serotonin in the modulation of circadian rhythm


Subject(s)
Humans , Raphe Nuclei , Serotonin , Circadian Rhythm
8.
Psychol. neurosci. (Impr.) ; 3(2): 217-228, July-Dec. 2010. ilus
Article in English | Index Psychology - journals | ID: psi-52264

ABSTRACT

All mammal behaviors and functions exhibit synchronization with environmental rhythms. This is accomplished through an internal mechanism that generates and modulates biological rhythms. The circadian timing system, responsible for this process, is formed by connected neural structures. Pathways receive and transmit environmental cues to the central oscillator, the hypothalamic suprachiasmatic nucleus, which mediates physiological and behavioral alterations. The suprachiasmatic nucleus has three major inputs: the retinohypothalamic tract (a direct projection from the retina), the geniculohypothalamic tract (an indirect photic projection originating in the intergeniculate leaflet), and a dense serotonergic plexus from the raphe nuclei. The serotonergic pathway, a source of non-photic cues to the suprachiasmatic nucleus, modulates its activity. The importance of raphe nuclei in circadian rhythms, especially in photic responses, has been demonstrated in many studies. Serotonin is the raphe neurotransmitter that triggers phase shifts, inhibits light-induced phase-shifts, and plays a role in controlling the sleep-wake cycle. All data to date have demonstrated the importance of the raphe, through serotonergic afferents, in adjusting circadian rhythms and must therefore be considered a component of the circadian timing system. The aim of this paper is to review the literature addressing the involvement of serotonin in the modulation of circadian rhythm.(AU)


Subject(s)
Circadian Rhythm , Serotonin , Raphe Nuclei
SELECTION OF CITATIONS
SEARCH DETAIL
...