Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Environ Microbiome ; 19(1): 50, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030648

ABSTRACT

Soybean cultivation in tropical regions relies on symbioses with nitrogen-fixing Bradyrhizobium and plant growth-promoting bacteria (PGPBs), reducing environmental impacts of N fertilizers and pesticides. We evaluate the effects of soybean inoculation with different bacterial consortia combined with PGPBs or microbial secondary metabolites (MSMs) on rhizosoil chemistry, plant physiology, plant nutrition, grain yield, and rhizosphere microbial functions under field conditions over three growing seasons with four treatments: standard inoculation of Bradyrhizobium japonicum and Bradyrhizobium diazoefficiens consortium (SI); SI plus foliar spraying with Bacillus subtilis (SI + Bs); SI plus foliar spraying with Azospirillum brasilense (SI + Az); and SI plus seed application of MSMs enriched in lipo-chitooligosaccharides extracted from B. diazoefficiens and Rhizobium tropici (SI + MSM). Rhizosphere microbial composition, diversity, and function was assessed by metagenomics. The relationships between rhizosoil chemistry, plant nutrition, grain yield, and the abundance of microbial taxa and functions were determined by generalized joint attribute modeling. The bacterial consortia had the most significant impact on rhizosphere soil fertility, which in turn affected the bacterial community, plant physiology, nutrient availability, and production. Cluster analysis identified microbial groups and functions correlated with shifts in rhizosoil chemistry and plant nutrition. Bacterial consortia positively modulated specific genera and functional pathways involved in biosynthesis of plant secondary metabolites, amino acids, lipopolysaccharides, photosynthesis, bacterial secretion systems, and sulfur metabolism. The effects of the bacterial consortia on the soybean holobiont, particularly the rhizomicrobiome and rhizosoil fertility, highlight the importance of selecting appropriate consortia for desired outcomes. These findings have implications for microbial-based agricultural practices that enhance crop productivity, quality, and sustainability.

2.
FEMS Microbiol Lett ; 367(18)2020 09 25.
Article in English | MEDLINE | ID: mdl-32897365

ABSTRACT

The presence of genes for glycosyl hydrolases in many Acidobacteria genomes indicates an important role in the degradation of plant cell wall material. Acidobacteria bacterium AB60 was obtained from Cerrado oligotrophic soil in Brazil, where this phylum is abundant. The 16S rRNA gene analyses showed that AB60 was closely related to the genera Occallatibacter and Telmatobacter. However, AB60 grew on xylan as carbon source, which was not observed in Occallatibacter species; but growth was not detected on medium containing carboxymethyl cellulose, as observed in Telmatobacter. Nevertheless, the genome analysis of AB60 revealed genes for the enzymes involved in cellulose as well as xylan degradation. In addition to enzymes involved in xylan degradation, α-l-rhamnosidase was detected in the cultures of AB60. Functional screening of a small-insert genomic library did not identify any clones capable of carboxymethyl cellulose degradation, but open reading frames coding α-l-arabinofuranosidase and α-l-rhamnosidase were present in clones showing xylan degradation halos. Both enzymes act on the lateral chains of heteropolymers such as pectin and some hemicelluloses. These results indicate that the hydrolysis of α-linked sugars may offer a metabolic niche for slow-growing Acidobacteria, allowing them to co-exist with other plant-degrading microbes that hydrolyze ß-linked sugars from cellulose or hemicellulose backbones.


Subject(s)
Acidobacteria/metabolism , Soil Microbiology , Xylans/metabolism , Acidobacteria/classification , Acidobacteria/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Brazil , Cellulose/metabolism , Genome, Bacterial/genetics , Hydrolysis , Pectins/metabolism , Phylogeny , Polysaccharides/metabolism , RNA, Ribosomal, 16S/genetics
3.
Archaea ; 2016: 3762159, 2016.
Article in English | MEDLINE | ID: mdl-27006640

ABSTRACT

This study compared soil archaeal communities of the Amazon forest with that of an adjacent area under oil palm cultivation by 16S ribosomal RNA gene pyrosequencing. Species richness and diversity were greater in native forest soil than in the oil palm-cultivated area, and 130 OTUs (13.7%) were shared between these areas. Among the classified sequences, Thaumarchaeota were predominant in the native forest, whereas Euryarchaeota were predominant in the oil palm-cultivated area. Archaeal species diversity was 1.7 times higher in the native forest soil, according to the Simpson diversity index, and the Chao1 index showed that richness was five times higher in the native forest soil. A phylogenetic tree of unclassified Thaumarchaeota sequences showed that most of the OTUs belong to Miscellaneous Crenarchaeotic Group. Several archaeal genera involved in nutrient cycling (e.g., methanogens and ammonia oxidizers) were identified in both areas, but significant differences were found in the relative abundances of Candidatus Nitrososphaera and unclassified Soil Crenarchaeotic Group (prevalent in the native forest) and Candidatus Nitrosotalea and unclassified Terrestrial Group (prevalent in the oil palm-cultivated area). More studies are needed to culture some of these Archaea in the laboratory so that their metabolism and physiology can be studied.


Subject(s)
Archaea/growth & development , Archaea/isolation & purification , Biodiversity , Soil Microbiology , Archaea/classification , Archaea/genetics , Brazil , Cluster Analysis , DNA, Archaeal/chemistry , DNA, Archaeal/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Euryarchaeota , Forests , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
4.
J Ind Microbiol Biotechnol ; 42(1): 73-84, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25404204

ABSTRACT

Sugarcane ethanol production occurs in non-sterile conditions, and microbial contamination can decrease productivity. In this study, we assessed the microbial diversity of contaminants of ethanol production in an industrial facility in Brazil. Samples obtained at different stages were analyzed by pyrosequencing-based profiling of bacterial and archaeal 16S rRNA genes and the fungal internal transcribed spacer region. A total of 355 bacterial groups, 22 archaeal groups, and 203 fungal groups were identified, and community changes were related to temperature changes at certain stages. After fermentation, Lactobacillus and unclassified Lactobacillaceae accounted for nearly 100 % of the bacterial sequences. Predominant Fungi groups were "unclassified Fungi," Meyerozyma, and Candida. The predominant Archaea group was unclassified Thaumarchaeota. This is the first work to assess the diversity of Bacteria, and Archaea and Fungi associated with the industrial process of sugarcane-ethanol production using culture-independent techniques.


Subject(s)
Archaea/classification , Bacteria/classification , Ethanol/metabolism , Fungi/classification , Saccharum/microbiology , Archaea/isolation & purification , Archaea/metabolism , Bacteria/isolation & purification , Bacteria/metabolism , Biodiversity , Biofuels , Brazil , Culture Media/chemistry , Culture Techniques , DNA, Archaeal/genetics , DNA, Bacterial/genetics , DNA, Fungal/genetics , Fermentation , Fungi/isolation & purification , Fungi/metabolism , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...