Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Model ; 29(8): 241, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37436478

ABSTRACT

CONTEXT: The design and synthesis of safe and highly active sulfonylurea herbicides is still a challenge. Therefore, following some principles of structure-activity relationship (SAR) of sulfonylurea herbicides, this work focuses on evaluating two sulfonylurea derivatives bearing electron-withdrawing substituents, namely, -(CO)OCH3 and -NO2 on the aryl group, on herbicidal activity. To understand the effects caused by the substituent groups, the molecular and electronic structures of the sulfonylureas were evaluated by density functional theory. Likewise, the crystalline supramolecular arrangements of both compounds were analyzed by Hirshfeld surface, QTAIM, and NBO, with the aim of verifying changes in intermolecular interactions caused by substituent groups. Finally, through a toxicophoric analysis, we were able to predict the interacting groups in their biological target, acetolactate synthase, and verify the interactions with the binding site. METHODS: All theoretical calculations were conducted using the highly parameterized empirical exchange-correlation functional M06-2X accompanied by the diffuse and polarized basis set 6-311++G(d,p). The atomic coordinates were obtained directly from the crystalline structures, and from the energies of the frontier molecular orbitals (HOMO and LUMO), chemical descriptors were obtained that indicated the influence of the functional groups in the sulfonylureas on the reactivity of the molecules. The intermolecular interactions in the crystals were analyzed using the Hirshfeld, QTAIM, and NBO surfaces. Toxicophoric modeling was performed by the PharmaGist webserver and molecular docking calculations were performed by the GOLD 2022.1.0 software package so that the ligand was fitted to the binding site in a 10 Å sphere. For this, genetic algorithm parameters were used using the ChemPLP scoring function for docking and ASP for redocking.


Subject(s)
Acetolactate Synthase , Herbicides , Molecular Docking Simulation , Models, Molecular , Acetolactate Synthase/chemistry , Acetolactate Synthase/metabolism , Herbicides/chemistry , Herbicides/pharmacology , Sulfonylurea Compounds/chemistry , Sulfonylurea Compounds/pharmacology , Pyrimidines
2.
J Mol Model ; 27(2): 65, 2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33532877

ABSTRACT

This work describes a comparative molecular structure of two hydroxychlorochalcones with an emphasis on their planarity. Hirshfeld surface analysis investigates the effect of ortho- and para-chlorine substitution on supramolecular arrangement and physical chemical properties. The molecular conformation of 2'-hydroxy-4',6'-dimethyl-2-chlorochalcone and 2'-hydroxy-4',6'-dimethyl-4-chlorochalcone chalcones was obtained through DFT with the exchange-correlation functional M06-2X and the 6-311++G(2d,2p) basis set, and the results were compared with the experimental X-ray data in order to get insights on the effect of ortho- and para-chlorine substitution. The charge transfer into entire main carbon chain was also investigated using frontier molecular orbitals (HOMO and LUMO), NBO, and MEP map in order to describe the comparative conformational stability due to the resonance effect produced by π electron displacements. Finally, the intermolecular observed interactions were analyzed by QTAIM, with the M06-2X/6-311G++(d,p) theory level.

3.
Appl Radiat Isot ; 165: 109332, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32739795

ABSTRACT

The Nuclear Engineering Department of the Military Institute of Engineering (SE/7-IME) is designing and simulation a neutron irradiator with 1 Ci of 241Am-9Be source. The objective of this irradiator is to generate a flux of neutrons to be used in research and teaching maintaining, for purposes of radiological protection, the rate of ambient dose equivalent, H*(10), below 10 µSv/h at 30 cm from the surface. This paper presents the proposed irradiator, values of H*(10) at different distances from the irradiator and the neutron flux in different points of the beam irradiation, all calculated using the MCNPX code.

SELECTION OF CITATIONS
SEARCH DETAIL
...