Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Front Physiol ; 14: 1055706, 2023.
Article in English | MEDLINE | ID: mdl-37441000

ABSTRACT

Aedes aegypti (Ae. aegypti) saliva induces a variety of anti-inflammatory and immunomodulatory activities. Interestingly, although it is known that mosquito bites cause allergic reactions in sensitised hosts, the primary exposure of humans to Ae. aegypti does not evoke significant itching. Whether active components in the saliva of Ae. aegypti can counteract the normal itch reaction to injury produced by a histaminergic or non-histaminergic pathway in vertebrate hosts is unknown. This study investigated the effects of Ae. aegypti mosquito salivary gland extract (SGE) on sensitive reactions such as itching and associated skin inflammation. Acute pruritus and plasma extravasation were induced in mice by the intradermal injection of either compound 48/80 (C48/80), the Mas-related G protein-coupled receptor (Mrgpr) agonist chloroquine (CQ), or the transient receptor potential ankyrin 1 (TRPA1) agonist allyl isothiocyanate (AITC). The i.d. co-injection of Ae. aegypti SGE inhibited itching, plasma extravasation, and neutrophil influx evoked by C48/80, but it did not significantly affect mast cell degranulation in situ or in vitro. Additionally, SGE partially reduced CQ- and AITC-induced pruritus in vivo, suggesting that SGE affects pruriceptive nerve firing independently of the histaminergic pathway. Activation of TRPA1 significantly increased intracellular Ca2+ in TRPA-1-transfected HEK293t lineage, which was attenuated by SGE addition. We showed for the first time that Ae. aegypti SGE exerts anti-pruriceptive effects, which are partially regulated by the histamine-independent itch TRPA1 pathway. Thus, SGE may possess bioactive molecules with therapeutic potential for treating nonhistaminergic itch.

2.
Biomolecules ; 14(1)2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38254656

ABSTRACT

The combustion of fossil fuels contributes to air pollution (AP), which was linked to about 8.79 million global deaths in 2018, mainly due to respiratory and cardiovascular-related effects. Among these, particulate air pollution (PM2.5) stands out as a major risk factor for heart health, especially during vulnerable phases. Our prior study showed that premature exposure to 1,2-naphthoquinone (1,2-NQ), a chemical found in diesel exhaust particles (DEP), exacerbated asthma in adulthood. Moreover, increased concentration of 1,2-NQ contributed to airway inflammation triggered by PM2.5, employing neurogenic pathways related to the up-regulation of transient receptor potential vanilloid 1 (TRPV1). However, the potential impact of early-life exposure to 1,2-naphthoquinone (1,2-NQ) on atrial fibrillation (AF) has not yet been investigated. This study aims to investigate how inhaling 1,2-NQ in early life affects the autonomic adrenergic system and the role played by TRPV1 in these heart disturbances. C57Bl/6 neonate male mice were exposed to 1,2-NQ (100 nM) or its vehicle at 6, 8, and 10 days of life. Early exposure to 1,2-NQ impairs adrenergic responses in the right atria without markedly affecting cholinergic responses. ECG analysis revealed altered rhythmicity in young mice, suggesting increased sympathetic nervous system activity. Furthermore, 1,2-NQ affected ß1-adrenergic receptor agonist-mediated positive chronotropism, which was prevented by metoprolol, a ß1 receptor blocker. Capsazepine, a TRPV1 blocker but not a TRPC5 blocker, reversed 1,2-NQ-induced cardiac changes. In conclusion, neonate mice exposure to AP 1,2-NQ results in an elevated risk of developing cardiac adrenergic dysfunction, potentially leading to atrial arrhythmia at a young age.


Subject(s)
Air Pollutants , Naphthoquinones , Male , Animals , Mice , Air Pollutants/toxicity , Adrenergic Agents , Sensory Receptor Cells , Heart Atria , Dust
3.
Front Pharmacol ; 13: 910219, 2022.
Article in English | MEDLINE | ID: mdl-35712716

ABSTRACT

Orofacial pain is one of the commonest and most complex complaints in dentistry, greatly impairing life quality. Preclinical studies using monoterpenes have shown pharmacological potential to treat painful conditions, but the reports of the effects of myrtenol on orofacial pain and inflammation are scarce. The aim of this study was to evaluate the effect of myrtenol in experimental models of orofacial pain and inflammation. Orofacial nociceptive behavior and the immunoreactivity of the phosphorylated p38 (P-p38)-MAPK in trigeminal ganglia (TG) and spinal trigeminal subnucleus caudalis (STSC) were determined after the injection of formalin in the upper lip of male Swiss mice pretreated with myrtenol (12.5 and 25 mg/kg, i.p.) or vehicle. Orofacial inflammation was induced by the injection of carrageenan (CGN) in the masseter muscle of mice pretreated with myrtenol (25 and 50 mg/kg, i.p.) or its vehicle (0.02% Tween 80 in saline). Myeloperoxidase (MPO) activity and histopathological changes in the masseter muscle and interleukin (IL)-1ß levels in the TG and STSC were measured. The increase in face-rubbing behavior time induced by formalin and P-p38-MAPK immunostaining in trigeminal ganglia were significantly reduced by myrtenol treatment (12.5 and 25 mg/kg). Likewise, increased MPO activity and inflammatory histological scores in masseter muscle, as well as augmented levels of IL-1ß in the TG AND STSC, observed after CGN injection, were significantly decreased by myrtenol (25 and 50 mg/kg). Myrtenol has potential to treat orofacial inflammation and pain, which is partially related to IL-1ß levels in the trigeminal pathway and p38-MAPK modulation in trigeminal ganglia.

4.
Biomolecules ; 12(2)2022 02 09.
Article in English | MEDLINE | ID: mdl-35204781

ABSTRACT

Mitochondria-targeted hydrogen sulfide (H2S) donor compounds, such as compound AP39, supply H2S into the mitochondrial environment and have shown several beneficial in vitro and in vivo effects in cardiovascular conditions such as diabetes and hypertension. However, the study of their direct vascular effects has not been addressed to date. Thus, the objective of the present study was to analyze the effects and describe the mechanisms of action of AP39 on the in vitro vascular reactivity of mouse mesenteric artery. Protein and gene expressions of the H2S-producing enzymes (CBS, CSE, and 3MPST) were respectively analyzed by Western blot and qualitative RT-PCR, as well the in vitro production of H2S by mesenteric artery homogenates. Gene expression of CSE and 3MPST in the vessels has been evidenced by RT-PCR experiments, whereas the protein expression of all the three enzymes was demonstrated by Western blotting experiments. Nonselective inhibition of H2S-producing enzymes by AOAA abolished H2S production, whereas it was partially inhibited by PAG (a CSE selective inhibitor). Vasorelaxation promoted by AP39 and its H2S-releasing moiety (ADT-OH) were significantly reduced after endothelium removal, specifically dependent on NO-cGMP signaling and SKCa channel opening. Endogenous H2S seems to participate in the mechanism of action of AP39, and glibenclamide-induced KATP blockade did not affect the vasorelaxant response. Considering the results of the present study and the previously demonstrated antioxidant and bioenergetic effects of AP39, we conclude that mitochondria-targeted H2S donors may offer a new promising perspective in cardiovascular disease therapeutics.


Subject(s)
Mesenteric Arteries , Vasodilator Agents , Animals , Mice , Mitochondria/metabolism , Thiones , Vasodilator Agents/pharmacology
5.
Mol Pharm ; 18(9): 3401-3417, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34482696

ABSTRACT

The need of pharmacological strategies to preclude breast cancer development motivated us to develop a non-aqueous microemulsion (ME) capable of forming a depot after administration in the mammary tissue and uptake of interstitial fluids for prolonged release of the retinoid fenretinide. The selected ME was composed of phosphatidylcholine/tricaprylin/propylene glycol (45:5:50, w/w/w) and presented a droplet diameter of 175.3 ± 8.9 nm. Upon water uptake, the ME transformed successively into a lamellar phase, gel, and a lamellar phase-containing emulsion in vitro as the water content increased and released 30% of fenretinide in vitro after 9 days. Consistent with the slow release, the ME formed a depot in cell cultures and increased fenretinide IC50 values by 68.3- and 13.2-fold in MCF-7 and T-47D cells compared to a solution, respectively. At non-cytotoxic concentrations, the ME reduced T-47D cell migration by 75.9% and spheroid growth, resulting in ∼30% smaller structures. The depot formed in vivo prolonged a fluorochrome release for 30 days without producing any sings of local irritation. In a preclinical model of chemically induced carcinogenesis, ME administration every 3 weeks for 3 months significantly reduced (4.7-fold) the incidence of breast tumors and increased type II collagen expression, which might contribute to limit spreading. These promising results support the potential ME applicability as a preventive therapy of breast cancer.


Subject(s)
Anticarcinogenic Agents/administration & dosage , Breast Neoplasms/prevention & control , Fenretinide/administration & dosage , Mammary Neoplasms, Experimental/prevention & control , Animals , Anticarcinogenic Agents/pharmacokinetics , Breast Neoplasms/chemically induced , Breast Neoplasms/pathology , Cell Survival/drug effects , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/pharmacokinetics , Drug Liberation , Drug Screening Assays, Antitumor , Emulsions , Female , Fenretinide/pharmacokinetics , Humans , Inhibitory Concentration 50 , MCF-7 Cells , Mammary Glands, Animal/drug effects , Mammary Glands, Animal/pathology , Mammary Neoplasms, Experimental/chemically induced , Mammary Neoplasms, Experimental/pathology , Methylnitrosourea/administration & dosage , Methylnitrosourea/toxicity , Mice , Rats
6.
J Physiol Biochem ; 77(4): 557-564, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34018097

ABSTRACT

Lipopolysaccharide (LPS) is a component of gram-negative bacteria wall that elicits inflammatory response in the host through the toll-like receptor 4 (TLR4) activation. In the lower urinary tract (LUT), bacteria-derived LPS has been associated with lower urinary tract symptoms (LUTS); however, little is known about the effects of LPS in the urethral smooth muscle (USM). In the present study, we evaluated the functional and molecular effects of LPS in mouse USM in vitro, focusing on the LPS-induced TLR4-signaling pathway. Male C57BL6/JUnib and TLR4 knockout mice (TLR4 KO) were used. The USM contraction was performed in the presence of LPS (62.5-500 µg/mL), indomethacin (10 µM), L-NAME (100 µM), and TAK 242 (1 µM). The RT-PCR assay for the IL-1ß, NF-kB, and COX-2 genes was also evaluated in the presence of LPS (125 µg/mL) and caspase 1 inhibitor (20 µM). Our results showed that LPS reduces mouse USM contraction elicited by phenylephrine and vasopressin. This LPS-induced urethral inhibitory effect was not reversed by the TLR4 inhibition or its absence in the TLR4 KO mice. Conversely, indomethacin (but not L-NAME) reversed the LPS-induced USM hypocontractility. Molecular protocols indicated upregulation of IL-1ß, NF-kß, and COX-2 mRNA upon LPS incubation, which were blunted by caspase 1 inhibition. Our data showed that LPS reduced mouse USM contraction independently of TLR4 activation, involving caspase 1 and IL1ß, NF-kB, and COX-2 gene overexpression. Therefore, this alternative pathway might be a valuable target to reduce the LPS-induced urethral dysfunction under infection and inflammatory conditions.


Subject(s)
Lipopolysaccharides , NF-kappa B , Animals , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Lipopolysaccharides/toxicity , Male , Mice , Muscle, Smooth/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Signal Transduction
7.
Eur J Pharmacol ; 890: 173636, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33053380

ABSTRACT

Inflammatory arthritis, such as rheumatoid arthritis (RA), stands out as one of the main sources of pain and impairment to the quality of life. The use of hemopressin (PVNFKFLSH; Hp), an inverse agonist of type 1 cannabinoid receptor, has proven to be effective in producing analgesia in pain models, but its effect on neuro-inflammatory aspects of RA is limited. In this study, antigen-induced arthritis (AIA) was evoked by the intraarticular (i.art.) injection of methylated bovine serum albumin (mBSA) in male Sprague Dawley rats. Phosphate buffered saline (PBS)-injected ipsilateral knee joints or AIA contralateral were used as control. Nociceptive and inflammatory parameters such as knee joint oedema and leukocyte influx and histopathological changes were carried out in addition to the local measurement of interleukins (IL) IL-6, IL-1ß, tumor necrosis factor-α and the immunoreactivity of the neuropeptides substance P (SP) and calcitonin gene related peptide (CGRP) in the spinal cord (lumbar L3-5 segments) of AIA rats. For 4 days, AIA rats were treated daily with a single administration of saline, Hp injected (10 or 20 µg/day, i.art.), Hp given orally (20 µg/Kg, p.o.) or indomethacin (Indo; 5 mg/Kg, i.p.). In comparison to the PBS control group, the induction of AIA produced a significant and progressive mono-arthritis condition. The degree of AIA severity progressively compromised the normal walking pattern and impaired mobility over the next four days in relation to PBS-injected rats or contralateral knee joints. In AIA rats, the reduction of the distance between footprints and disturbances of gait evidenced signs of nociception. This response worsened at day 4, and a loss of footprint from the ipsilateral hind paw was evident. Daily treatment of the animals with Hp either i.art. (10 and 20 µg/knee) or p.o. (20 µg/Kg) as well as Indo (5 mg/Kg, i.p.) ameliorated the impaired mobility in a time-dependent manner (P < 0.05). In parallel, the AIA-injected ipsilateral knee joints reach a peak of swelling 24 h after AIA induction, which persisted over the next four days in relation to PBS-injected rats or contralateral knee joints. There was a significant but not dose-dependent inhibitory effect produced by all dosages and routes of Hp treatments on AIA-induced knee joint swelling (P < 0.05). In addition, the increased synovial levels of MPO activity, total leukocytes number and IL-6, but not IL-1ß, were significantly reduced by the lower i.art. dose of Hp. In conclusion, these results successfully demonstrate that Hp may represent a novel therapeutic strategy to treat RA, an effect which is unrelated to the proinflammatory actions of the neuropeptides CGRP and SP.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/drug therapy , Hemoglobins/pharmacology , Nociceptive Pain/prevention & control , Peptide Fragments/pharmacology , Administration, Oral , Animals , Anti-Inflammatory Agents/administration & dosage , Behavior, Animal/drug effects , Cytokines/metabolism , Edema/drug therapy , Gait/drug effects , Hemoglobins/administration & dosage , Inflammation/drug therapy , Injections, Intra-Articular , Knee Joint/drug effects , Knee Joint/metabolism , Knee Joint/pathology , Leukocytes/drug effects , Male , Peptide Fragments/administration & dosage , Rats, Sprague-Dawley , Receptors, Calcitonin Gene-Related Peptide/metabolism , Substance P/metabolism
8.
EXCLI J ; 19: 707-717, 2020.
Article in English | MEDLINE | ID: mdl-32636724

ABSTRACT

Extensive literature regarding the health side effects of ambient pollutants (AP) are available, such as diesel exhaust particles (DEPs), but limited studies are available on their electrophilic contaminant 1,2-Naphthoquinone (1,2-NQ), enzymatically derived from naphthalene. This review summarizes relevant toxicologic and biological properties of 1,2-NQ as an environmental pollutant or to a lesser degree as a backbone in drug development to treat infectious diseases. It presents evidence of 1,2-NQ-mediated genotoxicity, neurogenic inflammation, and cytotoxicity due to several mechanistic properties, including the production of reactive oxygen species (ROS), that promote cell damage, carcinogenesis, and cell death. Many signal transduction pathways act as a vulnerable target for 1,2-NQ, including kappaB kinase b (IKKbeta) and protein tyrosine phosphatase 1B (PTP1B). Antioxidant molecules act in defense against ROS/RNS-mediated 1,2-NQ responses to injury. Nonetheless, its inhibitory effects at PTP1B, altering the insulin signaling pathway, represents a new therapeutic target to treat diabetes type 2. Questions exist whether exposure to 1,2-NQ may promote arylation of the Keap1 factor, a negative regulator of Nrf2, as well as acting on the sepiapterin reductase activity, an NADPH-dependent enzyme which catalyzes the formation of critical cofactors in aromatic amino acid metabolism and nitric oxide biosynthesis. Exposure to 1,2-NQ is linked to neurologic, behavioral, and developmental disturbances as well as increased susceptibility to asthma. Limited new knowledge exists on molecular modeling of quinones molecules as antitumoral and anti-microorganism agents. Altogether, these studies suggest that 1,2-NQ and its intermediate compounds can initiate a number of pathological pathways as AP in living organisms but it can be used to better understand molecular pathways.

9.
Antioxid Redox Signal ; 33(14): 1003-1009, 2020 11 10.
Article in English | MEDLINE | ID: mdl-32064887

ABSTRACT

Aims: The covalent linking of nonsteroidal anti-inflammatory drugs to a hydrogen sulfide (H2S)-releasing moiety has been shown to dramatically reduce gastrointestinal (GI) damage and bleeding, as well as increase anti-inflammatory and analgesic potency. We have tested the hypothesis that an H2S-releasing derivative of ketoprofen (ATB-352) would exhibit enhanced efficacy without significant GI damage in a mouse model of allodynia/hyperalgesia. Results: ATB-352 was significantly more potent and effective as an analgesic than ketoprofen and did not elicit GI damage. Pretreatment with an antagonist of the CB1 cannabinoid receptor (AM251) significantly reduced the analgesic effects of ATB-352. The CB1 antagonist exacerbated GI damage when coadministered with ketoprofen, but GI damage was not induced by the combination of ATB-352 and the CB1 antagonist. In vitro, ATB-352 was substantially more potent than ketoprofen as an inhibitor of fatty acid amide hydrolase, consistent with a contribution of endogenous cannabinoids to the analgesic effects of this drug. Blood anandamide levels were significantly depressed by ketoprofen, but remained unchanged after treatment with ATB-352. Innovation: Ketoprofen is a potent analgesic, but its clinical use, even in the short term, is significantly limited by its propensity to cause significant ulceration and bleeding in the GI tract. Covalently linking an H2S-releasing moiety to ketoprofen profoundly reduces the GI toxicity of the drug, while boosting analgesic effectiveness. Conclusion: This study demonstrates a marked enhancement of the potency and effectiveness of ATB-352, an H2S-releasing derivative of ketoprofen, in part, through the involvement of the endogenous cannabinoid system. This may have significant advantages for the control and management of pain, such as in a postoperative setting.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Gastrointestinal Tract/drug effects , Hydrogen Sulfide/pharmacology , Analgesics/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Cannabinoids/metabolism , Cannabinoids/pharmacology , Disease Models, Animal , Dose-Response Relationship, Radiation , Drug Synergism , Fatty Acids/metabolism , Gastric Mucosa/drug effects , Gastric Mucosa/metabolism , Gastric Mucosa/pathology , Hydrogen Sulfide/adverse effects , Hydrogen Sulfide/chemistry , Ketoprofen/pharmacology , Mice , Pain/drug therapy , Pain/etiology
10.
Br J Pharmacol ; 177(4): 857-865, 2020 02.
Article in English | MEDLINE | ID: mdl-31051046

ABSTRACT

Skin diseases constitute a major health problem affecting a high proportion of the population every day and have different aetiologies that include inflammation, infections, and tumours. Hydrogen sulfide (H2 S) is a gaseous signalling molecule recognized as a gasotransmitter together with NO and carbon monoxide. Under physiological conditions, H2 S is produced in the skin by enzymic pathways and plays a physiological role in a variety of functions, such as vasodilatation, cell proliferation, apoptosis, and inflammation. Alterations of H2 S production are implicated in a variety of dermatological diseases, such as psoriasis, melanoma, and other dermatoses. On the other hand, H2 S-releasing-based therapies based on H2 S donor compounds are being developed to treat some of these situations. In this review, we provide an up-to-date overview of the role of H2 S in the normal skin and its clinical and pathological significance, as well as the therapeutic potential of different H2 S donors for treatment of skin diseases. LINKED ARTICLES: This article is part of a themed section on Hydrogen Sulfide in Biology & Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.4/issuetoc.


Subject(s)
Gasotransmitters , Hydrogen Sulfide , Signal Transduction
11.
Eur J Pharmacol, v. 890, 173636, jan. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3856

ABSTRACT

Inflammatory arthritis, such as rheumatoid arthritis (RA), stands out as one of the main sources of pain and impairment to the quality of life. The use of hemopressin (PVNFKFLSH; Hp), an inverse agonist of type 1 cannabinoid receptor, has proven to be effective in producing analgesia in pain models, but its effect on neuro-inflammatory aspects of RA is limited. In this study, antigen-induced arthritis (AIA) was evoked by the intraarticular (i.art.) injection of methylated bovine serum albumin (mBSA) in male Sprague Dawley rats. Phosphate buffered saline (PBS)-injected ipsilateral knee joints or AIA contralateral were used as control. Nociceptive and inflammatory parameters such as knee joint oedema and leukocyte influx and histopathological changes were carried out in addition to the local measurement of interleukins (IL) IL-6, IL-1β, tumor necrosis factor-α and the immunoreactivity of the neuropeptides substance P (SP) and calcitonin gene related peptide (CGRP) in the spinal cord (lumbar L3-5 segments) of AIA rats. For 4 days, AIA rats were treated daily with a single administration of saline, Hp injected (10 or 20 μg/day, i.art.), Hp given orally (20 μg/Kg, p.o.) or indomethacin (Indo; 5 mg/Kg, i.p.). In comparison to the PBS control group, the induction of AIA produced a significant and progressive mono-arthritis condition. The degree of AIA severity progressively compromised the normal walking pattern and impaired mobility over the next four days in relation to PBS-injected rats or contralateral knee joints. In AIA rats, the reduction of the distance between footprints and disturbances of gait evidenced signs of nociception. This response worsened at day 4, and a loss of footprint from the ipsilateral hind paw was evident. Daily treatment of the animals with Hp either i.art. (10 and 20 μg/knee) or p.o. (20 μg/Kg) as well as Indo (5 mg/Kg, i.p.) ameliorated the impaired mobility in a time-dependent manner (P < 0.05). In parallel, the AIA-injected ipsilateral knee joints reach a peak of swelling 24 h after AIA induction, which persisted over the next four days in relation to PBS-injected rats or contralateral knee joints. There was a significant but not dose-dependent inhibitory effect produced by all dosages and routes of Hp treatments on AIA-induced knee joint swelling (P < 0.05). In addition, the increased synovial levels of MPO activity, total leukocytes number and IL-6, but not IL-1β, were significantly reduced by the lower i.art. dose of Hp. In conclusion, these results successfully demonstrate that Hp may represent a novel therapeutic strategy to treat RA, an effect which is unrelated to the proinflammatory actions of the neuropeptides CGRP and SP

12.
Int Immunopharmacol ; 73: 435-441, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31154288

ABSTRACT

Studies suggest that hydrogen sulfide (H2S) plays a relevant and beneficial role in the pathophysiology of pulmonary allergic diseases, such as asthma. These diseases may be triggered by changes in airway epithelium caused by repeated exposure to environmental allergens. This study aimed to investigate whether H2S protects against bronchial epithelium apoptosis in allergic inflammation in mice. The effects of H2S on the production of Th2 cytokines and on the infiltration of pulmonary inflammatory cells were also studied. Female BALB/c mice previously sensitized with ovalbumin (OVA) were treated with H2S donor (sodium hydrosulfide [NaHS]) 30 min prior to OVA challenge. After euthanasia (48 h post challenge), the right lung was homogenized to study apoptosis protein expression and to analyze cytokine levels in lung tissue. The left lobe was fixed in formalin for morphological analysis of lung tissue and verification of apoptosis in situ by the TUNEL assay. Histological results showed that NaHS reduced the airway inflammatory infiltrate and prevented an increase in the IL-4, IL-5 and IL-25 levels caused by OVA challenge. Activation of caspase 3 and FasL in response to the allergen was also fully prevented by NaHS treatment. TUNEL staining showed that the challenge from OVA significantly increased the rate of apoptosis in the bronchiolar epithelium, and that this incremental apoptosis was abolished by NaHS treatment. In conclusion, our results showed that H2S donor has a protective effect against airway epithelium damage caused by an allergic reaction, and represents a potential agent in treating allergic lung disorders, such as asthma.


Subject(s)
Cytokines/immunology , Epithelium/drug effects , Lung/drug effects , Respiratory Hypersensitivity/immunology , Animals , Apoptosis/drug effects , Disease Models, Animal , Epithelium/immunology , Epithelium/pathology , Female , Hydrogen Sulfide , Lung/immunology , Lung/pathology , Mice, Inbred BALB C , Ovalbumin , Respiratory Hypersensitivity/pathology , Sulfides/pharmacology
13.
Pharmacol Rep ; 70(6): 1139-1145, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30317129

ABSTRACT

BACKGROUND: Skeletal muscle inflammation is strongly associated with pain and may impair regeneration and functional recovery after injury. Since anti-inflammatory and antinociceptive effects have been described for the inclusion complex of carvacrol and ß-cyclodextrin (ßCD-carvacrol), this study investigated the effects of ßCD-carvacrol in a model of acute skeletal muscle inflammation. METHODS: Muscle injury was induced in male Wistar rats by injection of 3% carrageenan in the gastrocnemius muscle. Rats were orally pretreated with saline (vehicle) or ßCD-carvacrol (20, 40, 80 and 180 mg/kg) one hour before administration of carrageenan. RESULTS: The injection of carrageenan in the gastrocnemius muscle increased tissue myeloperoxidase (MPO) activity (p < 0.001), edema (p < 0.001) and the levels of tumoral necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6, macrophage inflammatory protein (MIP-2), but not IL-10 levels. Also, it increased mechanical hyperalgesia and decreased the grip force of animals. Pretreatment with ßCD-carvacrol (80 or 160 mg/kg) significantly decreased muscle MPO activity and edema 24 h after injury in comparison to vehicle-pretreated group. Animals pretreated with ßCD-carvacrol (160 mg/kg) presented significantly lower levels of IL-1ß, IL-6 and MIP-2 and higher levels of IL-10 six hours after induction and lower levels of TNF-α and MIP-2 after 24 h when compared to the vehicle group. Pretreatment with ßCD-carvacrol also reduced mechanical hyperalgesia and limited the decrease of grip force (80 or 160 mg/kg; p < 0.001) 6 and 24 h after injury. CONCLUSION: These results show that ßCD-carvacrol reduces inflammation and nociception in a model of acute injury to skeletal muscles.


Subject(s)
Inflammation Mediators/metabolism , Monoterpenes/administration & dosage , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Nociception/drug effects , beta-Cyclodextrins/administration & dosage , Animals , Carrageenan/toxicity , Cymenes , Dose-Response Relationship, Drug , Drug Combinations , Hand Strength/physiology , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Inflammation Mediators/antagonists & inhibitors , Male , Nociception/physiology , Rats , Rats, Wistar
14.
Oxid Med Cell Longev ; 2018: 4904696, 2018.
Article in English | MEDLINE | ID: mdl-29983857

ABSTRACT

Thioredoxin plays an essential role in bacterial antioxidant machinery and virulence; however, its regulatory actions in the host are less well understood. Reduced human Trx activates transient receptor potential canonical 5 (TRPC5) in inflammation, but there is no evidence of whether these receptors mediate bacterial thioredoxin effects in the host. Importantly, TRPC5 can form functional complexes with other subunits such as TRPC4. Herein, E. coli-derived thioredoxin induced mortality in lipopolysaccharide- (LPS-) injected mice, accompanied by reduction of leukocyte accumulation, regulation of cytokine release into the peritoneum, and impairment of peritoneal macrophage-mediated phagocytosis. Dual TRPC4/TRPC5 blockade by ML204 increased mortality and hypothermia in thioredoxin-treated LPS mice but preserved macrophage's ability to phagocytose. TRPC5 deletion did not alter body temperature but promoted additional accumulation of peritoneal leukocytes and inflammatory mediator release in thioredoxin-administered LPS mice. Thioredoxin diminished macrophage-mediated phagocytosis in wild-type but not TRPC5 knockout animals. TRPC5 ablation did not affect LPS-induced responses. However, ML204 caused mortality associated with exacerbated hypothermia and decreased peritoneal leukocyte numbers and cytokines in LPS-injected mice. These results suggest that bacterial thioredoxin effects under LPS stimuli are mediated by TRPC4 and TRPC5, shedding light on the additional mechanisms of bacterial virulence and on the pathophysiological roles of these receptors.


Subject(s)
Escherichia coli/chemistry , Lipopolysaccharides/toxicity , Systemic Inflammatory Response Syndrome/metabolism , TRPC Cation Channels/metabolism , Thioredoxins/therapeutic use , Animals , Hydrogen Peroxide/metabolism , Indoles/toxicity , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide/metabolism , Phagocytosis/drug effects , Piperidines/toxicity , Systemic Inflammatory Response Syndrome/chemically induced , TRPC Cation Channels/antagonists & inhibitors , Virulence/drug effects
15.
Sci Rep ; 8(1): 11013, 2018 07 20.
Article in English | MEDLINE | ID: mdl-30030460

ABSTRACT

We investigated the effect of the crude herbal extract from Uncaria tomentosa (UT) on non-alcoholic fatty liver disease (NAFLD) in two models of obesity: high fat diet (HFD) and genetically obese (ob/ob) mice. Both obese mouse models were insulin resistant and exhibited an abundance of lipid droplets in the hepatocytes and inflammatory cell infiltration in the liver, while only the HFD group had collagen deposition in the perivascular space of the liver. UT treatment significantly reduced liver steatosis and inflammation in both obese mouse models. Furthermore, serine phosphorylation of IRS-1 was reduced by 25% in the HFD mice treated with UT. Overall, UT treated animals exhibited higher insulin sensitivity as compared to vehicle administration. In conclusion, Uncaria tomentosa extract improved glucose homeostasis and reverted NAFLD to a benign hepatic steatosis condition and these effects were associated with the attenuation of liver inflammation in obese mice.


Subject(s)
Cat's Claw/metabolism , Insulin Resistance/physiology , Non-alcoholic Fatty Liver Disease/drug therapy , Animals , Diet, High-Fat , Disease Models, Animal , Inflammation/drug therapy , Insulin/pharmacology , Liver/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/physiopathology , Obesity/physiopathology , Plant Extracts/pharmacology
16.
Am J Physiol Renal Physiol ; 315(3): F460-F468, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29717937

ABSTRACT

Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS) is a chronic inflammatory disease without consistently effective treatment. We investigate the role of toll-like receptor 4 (TLR4) on voiding dysfunction and inflammation in the cyclophosphamide (CYP)-induced mouse cystitis. Male C57BL/6 [wild-type, (WT)] and/or TLR4 knockout (TLR4-/-) mice were treated with an injection of CYP (300 mg/kg, 24 h) or saline (10 ml/kg). The pharmacological blockade of the TLR4 by resatorvid (10 mg/kg) was also performed 1 h prior CYP-injection in WT mice. Urodynamic profiles were assessed by voiding stain on filter paper and filling cystometry. Contractile responses to carbachol were measured in isolated bladders. In CYP-exposed WT mice, mRNA for TLR4, myeloid differentiation primary response 88, and TIR-domain-containing adapter-inducing interferon-ß increased by 45%, 72%, and 38%, respectively ( P < 0.05). In free-moving mice, CYP-exposed mice exhibited a higher number of urinary spots and smaller urinary volumes. Increases of micturition frequency and nonvoiding contractions, concomitant with decreases of intercontraction intervals and capacity, were observed in the filling cystometry of WT mice ( P < 0.05). Carbachol-induced bladder contractions were significantly reduced in the CYP group, which was paralleled by reduced mRNA for M2 and M3 muscarinic receptors. These functional and molecular alterations induced by CYP were prevented in TLR4-/- and resatorvid-treated mice. Additionally, the increased levels of inflammatory markers induced by CYP exposure, myeloperoxidase activity, interleukin-6, and tumor necrosis factor-alpha were significantly reduced by resatorvid treatment. Our findings reveal a central role for the TLR4 signaling pathway in initiating CYP-induced bladder dysfunction and inflammation and thus emphasize that TLR4 receptor blockade may have clinical value for IC/BPS treatment.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Cyclophosphamide , Cystitis, Interstitial/prevention & control , Sulfonamides/pharmacology , Toll-Like Receptor 4/antagonists & inhibitors , Toll-Like Receptor 4/deficiency , Urinary Bladder/drug effects , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/metabolism , Animals , Cystitis, Interstitial/chemically induced , Cystitis, Interstitial/genetics , Cystitis, Interstitial/metabolism , Disease Models, Animal , Inflammation Mediators/metabolism , Interleukin-6/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Peroxidase/metabolism , Receptor, Muscarinic M2/genetics , Receptor, Muscarinic M2/metabolism , Receptor, Muscarinic M3/genetics , Receptor, Muscarinic M3/metabolism , Signal Transduction/drug effects , Toll-Like Receptor 4/genetics , Tumor Necrosis Factor-alpha/metabolism , Urinary Bladder/metabolism , Urinary Bladder/physiopathology , Urination/drug effects , Urodynamics/drug effects
17.
J Pharm Sci ; 107(2): 698-705, 2018 02.
Article in English | MEDLINE | ID: mdl-28935591

ABSTRACT

Because P-glycoprotein (P-gp) plays an absorptive role in the skin, its pharmacological inhibition represents a strategy to promote cutaneous localization of anticancer agents that serve as its substrates, improving local efficacy while reducing systemic exposure. Here, we evaluated the ability of a nanoemulsion (NE) coencapsulating a P-gp inhibitor (elacridar) with the antitumor drug paclitaxel to promote epidermal targeting. Loaded NE displayed a nanometric size (45.2 ± 4.0 nm) and negative zeta potential (-4.2 ± 0.8 mV). Elacridar improved NE ability to inhibit verapamil-induced ATPase activity of P-gp; unloaded NE-inhibited P-gp when used at a concentration of 1500 µM, while elacridar encapsulation decreased this concentration by 3-fold (p <0.05). Elacridar-loaded NE reduced paclitaxel penetration into the dermis of freshly excised mice skin and its percutaneous permeation by 1.5- and 1.7-fold (p <0.05), respectively at 6 h, whereas larger drug amounts (1.4-fold, p <0.05) were obtained in viable epidermis. Assessment of cutaneous distribution of a fluorescent paclitaxel derivative confirmed the smaller delivery into the dermis at elacridar presence. In conclusion, we have provided novel evidence that NE containing elacridar exhibited a clear potential for P-gp inhibition and enabled epidermal targeting of paclitaxel, which in turn, can potentially reduce adverse effects associated with systemic exposure to anticancer therapy.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , Acridines/pharmacology , Antineoplastic Agents/pharmacology , Drug Carriers/chemistry , Membrane Transport Proteins/metabolism , Nanoparticles/chemistry , Skin/drug effects , Tetrahydroisoquinolines/pharmacology , Acridines/chemistry , Administration, Cutaneous , Animals , Antineoplastic Agents/chemistry , Biological Transport/drug effects , Emulsions/chemistry , Emulsions/pharmacology , Mice , Mice, Inbred BALB C , Paclitaxel/chemistry , Paclitaxel/pharmacology , Particle Size , Tetrahydroisoquinolines/chemistry , Verapamil/chemistry , Verapamil/pharmacology
18.
Adv Exp Med Biol ; 929: 91-125, 2016.
Article in English | MEDLINE | ID: mdl-27771922

ABSTRACT

A significant number of experimental and clinical studies published in peer-reviewed journals have demonstrated promising pharmacological properties of capsaicin in relieving signs and symptoms of non-communicable diseases (chronic diseases). This chapter provides an overview made from basic and clinical research studies of the potential therapeutic effects of capsaicin, loaded in different application forms, such as solution and cream, on chronic diseases (e.g. arthritis, chronic pain, functional gastrointestinal disorders and cancer). In addition to the anti-inflammatory and analgesic properties of capsaicin largely recognized via, mainly, interaction with the TRPV1, the effects of capsaicin on different cell signalling pathways will be further discussed here. The analgesic, anti-inflammatory or apoptotic effects of capsaicin show promising results in arthritis, neuropathic pain, gastrointestinal disorders or cancer, since evidence demonstrates that the oral or local application of capsaicin reduce inflammation and pain in rheumatoid arthritis, promotes gastric protection against ulcer and induces apoptosis of the tumour cells. Sadly, these results have been paralleled by conflicting studies, which indicate that high concentrations of capsaicin are likely to evoke deleterious effects, thus suggesting that capsaicin activates different pathways at different concentrations in both human and rodent tissues. Thus, to establish effective capsaicin doses for chronic conditions, which can be benefited from capsaicin therapeutic effects, is a real challenge that must be pursued.


Subject(s)
Analgesics/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Antineoplastic Agents, Phytogenic/therapeutic use , Capsaicin/therapeutic use , Chronic Disease/drug therapy , Drug Discovery/methods , Analgesics/adverse effects , Analgesics/chemistry , Animals , Anti-Inflammatory Agents/adverse effects , Anti-Inflammatory Agents/chemistry , Antineoplastic Agents, Phytogenic/adverse effects , Antineoplastic Agents, Phytogenic/chemistry , Capsaicin/adverse effects , Capsaicin/chemistry , Dose-Response Relationship, Drug , Humans , Phytotherapy , Plants, Medicinal , Signal Transduction/drug effects
19.
Int Immunopharmacol ; 39: 57-62, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27424079

ABSTRACT

OBJECTIVE: The interaction between nitric oxide (NO) and hydrogen sulfide (H2S) in the airways could have significant implications for the pathogenesis and therapeutic effects of both on lung diseases. In this study we investigated whether the beneficial effects of H2S on asthma could be comparable to that inhibition of inducible NO synthase (iNOS). METHODS: Female BALB/C mice sensitized with ovalbumin (OVA) received either the H2S donor sodium hydrosulfide (NaHS, 14µmol/kg) or the iNOS inhibitor 1400W (1mg/kg), 30min before each OVA challenge during six days. On the first, second and sixth days, the leucocyte infiltration in lung parenchyma and bronchoalveolar lavage was evaluated. The aconitase activity (a sensor of O2 formation) and lipid peroxidation, as well as levels of reduced glutathione (GSH) and oxidized glutathione (GSSG) were determined in the lung tissues. RESULTS: OVA-challenge caused a significant and time-dependent increase in the eosinophil number in the airways, which was accompanied by a significant decrease of aconitase activity and GSH/GSSG ratio along with enhanced lipid peroxidation in the lungs. Treatment with NaHS or 1400W significantly attenuated the airways eosinophilia that was paralleled by an increase in aconitase activity and decrease of lipid peroxidation. NaHS or 1400W treatments also reversed the decreased GSH/GSSG ratio seen after OVA-challenge. CONCLUSIONS: The present study shows for the first time that the increased GSH/GSSG ratio caused by either H2S supplementation or iNOS-inhibition is a potential mechanism protecting airways against oxidative stress and inflammatory lung diseases.


Subject(s)
Asthma/drug therapy , Enzyme Inhibitors/therapeutic use , Glutathione/metabolism , Hydrogen Sulfide/therapeutic use , Lung/drug effects , Neutrophils/drug effects , Pneumonia/drug therapy , Aconitate Hydratase/metabolism , Animals , Cell Movement/drug effects , Enzyme Inhibitors/pharmacology , Female , Lung/immunology , Lung/pathology , Mice , Mice, Inbred BALB C , Neutrophils/immunology , Nitric Oxide Synthase Type II/antagonists & inhibitors , Oxidative Stress/drug effects
20.
Int Immunopharmacol ; 34: 60-70, 2016 May.
Article in English | MEDLINE | ID: mdl-26922677

ABSTRACT

Cinnamaldehyde is a natural essential oil suggested to possess anti-bacterial and anti-inflammatory properties; and to activate transient receptor potential ankyrin 1 (TRPA1) channels expressed on neuronal and non-neuronal cells. Here, we investigated the immunomodulatory effects of cinnamaldehyde in an in vivo model of systemic inflammatory response syndrome (SIRS) induced by lipopolysaccharide. Swiss mice received a single oral treatment with cinnamaldehyde 1 h before LPS injection. To investigate whether cinnamaldehyde effects are dependent on TRPA1 activation, animals were treated subcutaneously with the selective TRPA1 antagonist HC-030031 5 min prior to cinnamaldehyde administration. Vehicle-treated mice were used as controls. Cinnamaldehyde ameliorated SIRS severity in LPS-injected animals. Diminished numbers of circulating mononuclear cells and increased numbers of peritoneal mononuclear and polymorphonuclear cell numbers were also observed. Cinnamaldehyde augmented the number of peritoneal Ly6C(high) and Ly6C(low) monocyte/macrophage cells in LPS-injected mice. Reduced levels of nitric oxide, plasma TNFα and plasma and peritoneal IL-10 were also detected. Additionally, IL-1ß levels were increased in the same animals. TRPA1 antagonism by HC-030031 reversed the changes in the number of circulating and peritoneal leukocytes in cinnamaldehyde-treated animals, whilst increasing the levels of peritoneal IL-10 and reducing peritoneal IL-1ß. Overall, cinnamaldehyde modulates SIRS through TRPA1-dependent and independent mechanisms.


Subject(s)
Acrolein/analogs & derivatives , Macrophages/drug effects , Systemic Inflammatory Response Syndrome/drug therapy , Transient Receptor Potential Channels/metabolism , Acetanilides/pharmacology , Acrolein/therapeutic use , Animals , Cell Movement/drug effects , Cinnamomum zeylanicum/immunology , Disease Models, Animal , Female , Interleukin-10/metabolism , Interleukin-1beta/metabolism , Lipopolysaccharides/immunology , Macrophages/immunology , Mice , Pregnancy , Purines/pharmacology , TRPA1 Cation Channel
SELECTION OF CITATIONS
SEARCH DETAIL
...