Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(6): e0305073, 2024.
Article in English | MEDLINE | ID: mdl-38900837

ABSTRACT

Stable isotope methods have been used to study protein metabolism in humans; however, there application in dogs has not been frequently explored. The present study compared the methods of precursor (13C-Leucine), end-products (15N-Glycine), and amino acid oxidation (13C-Phenylalanine) to determine the whole-body protein turnover rate in senior dogs. Six dogs (12.7 ± 2.6 years age, 13.6 ± 0.6 kg bodyweight) received a dry food diet for maintenance and were subjected to all the above-mentioned methods in succession. To establish 13C and 15N kinetics, according to different methodologies blood plasma, urine, and expired air were collected using a specifically designed mask. The volume of CO2 was determined using respirometry. The study included four methods viz. 13C-Leucine, 13C-Phenylalanine evaluated with expired air, 13C-Phenylalanine evaluated with urine, and 15N-Glycine, with six dogs (repetitions) per method. Data was subjected to variance analysis and means were compared using the Tukey test (P<0.05). In addition, the agreement between the methods was evaluated using Pearson correlation and Bland-Altman statistics. Protein synthesis (3.39 ± 0.33 g.kg-0,75. d-1), breakdown (3.26 ± 0.18 g.kg-0.75.d-1), and flux estimations were similar among the four methods of study (P>0.05). However, only 13C-Leucine and 13C-Phenylalanine (expired air) presented an elevated Pearson correlation and concordance. This suggested that caution should be applied while comparing the results with the other methodologies.


Subject(s)
Leucine , Oxidation-Reduction , Phenylalanine , Animals , Dogs , Leucine/metabolism , Leucine/blood , Phenylalanine/metabolism , Phenylalanine/blood , Carbon Isotopes , Amino Acids/metabolism , Amino Acids/blood , Male , Nitrogen Isotopes , Glycine/urine , Glycine/metabolism , Glycine/blood , Proteins/metabolism , Proteins/analysis , Female
2.
Environ Monit Assess ; 195(3): 361, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36735073

ABSTRACT

The present study focuses on the Tamoios aquifer (Rio de Janeiro State, Brazil), which is under pressure due to receiving a significant volume of urban runoff and sewage. The objective was based on a number of hydrogeochemical and isotope data to assess the aquifer functioning and establishing a conceptual model to evaluate the hydrogeochemical processes. The database consisted of groundwater samples (n = 20) and surface water samples (fluvial, lagoon, and seawater) (n = 4), analyzed for major and trace constituents plus 18O and 2H isotopes. Results demonstrate that most of the groundwater samples were classified as sodium-chloride type in the rainy season and magnesium-chloride type in the dry season. Ion ratios indicated the ion sources and chemical behavior. Groundwater remained with a relatively high salt content throughout the seasons, particularly in the samples from the southern portion of the aquifer. PHREEQC software simulations exposed dolomite and calcite in mostly undersaturated condition and halite subsaturated throughout the year. Hydrogeochemical behavior indicated the salt content in the groundwater was not related to a hypothetical saltwater intrusion and revealed a steady state condition for the groundwater interface. Groundwater samples have a similar isotopic signature and were likely influenced by evaporative effects, indicating a role for the existing ponds in aquifer recharge. Strong free surface evaporation effects, evapotranspiration, and drainage processes in the floodplains probably enhanced the high ionic concentration in the groundwater environment.


Subject(s)
Groundwater , Water Pollutants, Chemical , Seasons , Chlorides , Brazil , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Groundwater/chemistry , Sodium Chloride
3.
J Anim Sci ; 100(5)2022 May 01.
Article in English | MEDLINE | ID: mdl-35311895

ABSTRACT

This study aimed to evaluate the use of total odd-chain fatty acids (OCFA) as a marker to estimate microbial nitrogen flow (MicN) and calculate the efficiency of microbial nitrogen synthesis (EMNS) in Nellore steers fed high-concentrate diets supplemented with different nitrogen supplements (NS). Ruminally and duodenally cannulated Nellore steers (n = 6; 354 ± 12 kg) were used in a 6 × 6 repeated switchback design balanced for residual effects. Treatments were arranged in a 3 × 3 factorial of three nitrogen (N) supplements (urea plus soybean meal; corn gluten meal; dried distillers' grains plus solubles) and three microbial markers (OCFA; double-labeled urea, 15N; microbial nucleic acid bases, MNAB). The total mixed ration was composed of fresh chopped sugarcane as the forage source in an 83:17 concentrate: forage ratio (dry matter basis). Linear regression was used to develop predictions of MicN from OCFA using 15N and MNAB as response variables. Microbial N flow was underestimated by the MNAB marker compared to 15N. Neither NS nor their respective interactions with the marker methods (MM) affected MicN or EMNS (P > 0.05). However, MicN was different for 15N and MNAB (P > 0.001 for both treatments). Marker methods affected EMNS in all energetic bases (total digestible carbohydrates P < 0.001; rumen-fermentable carbohydrates P < 0.001; organic matter truly degradable in the rumen P < 0.001). Equations that utilized OCFA as a regressor to predict MicN under different MM resulted in good fits of the data as observed by the coefficient of determination (R2; 15N = 0.78; MNAB = 0.69). Microbial N flow estimated from OCFA was overpredicted (15N by 7.46%; MNAB by 4.30%) compared with observed values. The OCFA model presented a small slope bias when methodological validation was applied (15N = 0.96%; MNAB = 3.90%), ensuring reliability of the proposed alternative method. Based on the conditions of this experiment, OCFA may be a suitable alternative to other methods that quantify MicN under different dietary conditions.


Nutritional strategies that maximize microbial nitrogen supply to the small intestine may improve cattle performance. Nevertheless, in vivo quantification generally requires sensitive or expensive methods and often yields highly variable results. In the present work, we investigated the use of duodenal odd-chain fatty acids (OCFA) as an alternative method to predict microbial nitrogen flow (MicN) and calculated its efficiency on different energetic bases under different dietary nitrogen supplements. We utilized total OCFA flow (TOCFAf) to predict MicN by two well-established conventional methods: 1) 15N, considered the gold standard and 2) microbial nucleic acid bases. Models presented a positive relationship between TOCFDf and response variables, and under validation, both demonstrated low estimation bias. Under the conditions of this experiment, OCFA appeared to serve as an alternative marker to quantify ruminal MicN for beef cattle.


Subject(s)
Nitrogen , Rumen , Animal Feed/analysis , Animals , Carbohydrates , Diet/veterinary , Digestion , Fatty Acids/metabolism , Fermentation , Nitrogen/metabolism , Reproducibility of Results , Rumen/metabolism , Urea/metabolism
4.
Tree Physiol ; 41(8): 1372-1383, 2021 08 11.
Article in English | MEDLINE | ID: mdl-33517451

ABSTRACT

Carbon allocation between source and sink organs determines plant growth and is influenced by environmental conditions. Under water deficit (WD), plant growth is inhibited before photosynthesis and shoot growth tends to be more sensitive than root growth. However, the modulation of the source-sink relationship by rootstocks remains unsolved in citrus trees under WD. Citrus plants grafted on Rangpur lime are drought tolerant, which may be related to a fine coordination of the source-sink relationship for maintaining root growth. Here, we followed 13C allocation and evaluated physiological responses and growth of Valencia orange trees grafted on three citrus rootstocks (Rangpur lime, Swingle citrumelo and Sunki mandarin) under WD. As compared with plants on Swingle and Sunki rootstocks, ones grafted on Rangpur lime showed higher stomatal sensitivity to the initial variation of water availability and less accumulation of non-structural carbohydrates in roots under WD. High 13C allocation found in Rangpur lime roots indicates this rootstock has high sink demand associated with high root growth under WD. Our data suggest that Rangpur lime rootstock used photoassimilates as sources of energy and carbon skeletons for growing under drought, which is likely related to increases in root respiration. Taken together, our data revealed that carbon supply by leaves and delivery to roots are critical for maintaining root growth and improving drought tolerance, with citrus rootstocks showing differential sink strength under WD.


Subject(s)
Citrus sinensis , Citrus , Droughts , Plant Leaves , Plant Roots , Water
5.
An Acad Bras Cienc ; 90(2 suppl 1): 2469-2478, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30066749

ABSTRACT

Isotope-ratio mass spectrometry (IRMS) is a potential tool that provides time-integrated estimate of assimilated and not just ingested nutrients. This feature turned possible its application to evaluate the effects of dietary nucleotides and glutamate on carbon turnover (δ13C) in the brain of weanling piglets. Eighty-seven piglets weaned at 21-day-old were used, being three piglets slaughtered at day-0 (prior to diet-switch) and, the remaining 84 randomly assigned in a complete block design with a 2 x 2 factorial arrangement of treatments (two nucleotide levels: 0% and 0.1% and, two glutamate levels: 0% and 1%). On trial days 3, 6, 9, 14, 21, 35 and 49, three piglets per treatment were also slaughtered. The samples were analyzed by IRMS and adjusted to the first-order equation by a nonlinear regression analysis using NLIN procedure of SAS, in order to obtain the exponential graphics. The carbon turnover (t95%) verified for cerebral tissue was faster (P<0.05) for diet containing glutamate in comparison to other diets, supporting the fact that glutamate contributed to develop the piglets' brain, due to the fastest incorporation of 13C-atoms in this tissue at post-weaning phase, despite the energy deficit experienced by them.


Subject(s)
Brain Chemistry , Carbon Isotopes/analysis , Diet/veterinary , Gas Chromatography-Mass Spectrometry/veterinary , Glutamine/analysis , Nucleotides/analysis , Swine/physiology , Animals , Animals, Newborn , Gas Chromatography-Mass Spectrometry/methods , Weaning
SELECTION OF CITATIONS
SEARCH DETAIL
...