Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Publication year range
1.
G3 (Bethesda) ; 11(11)2021 10 19.
Article in English | MEDLINE | ID: mdl-34519766

ABSTRACT

During the past decade, sweet sorghum (Sorghum bicolor Moench L.) has shown great potential for bioenergy production, especially biofuels. In this study, 223 recombinant inbred lines (RILs) derived from a cross between two sweet sorghum lines (Brandes × Wray) were evaluated in three trials. Single-nucleotide polymorphisms (SNPs) derived from genotyping by sequencing of 272 RILs were used to build a high-density genetic map comprising 3,767 SNPs spanning 1,368.83 cM. Multitrait multiple interval mapping (MT-MIM) was carried out to map quantitative trait loci (QTL) for eight bioenergy traits. A total of 33 QTLs were identified for flowering time, plant height, total soluble solids and sucrose (five QTLs each), fibers (four QTLs), and fresh biomass yield, juice extraction yield, and reducing sugars (three QTLs each). QTL hotspots were found on chromosomes 1, 3, 6, 9, and 10, in addition to other QTLs detected on chromosomes 4 and 8. We observed that 14 out of the 33 mapped QTLs were found in all three trials. Upon further development and validation in other crosses, the results provided by the present study have a great potential to be used in marker-assisted selection in sorghum breeding programs for biofuel production.


Subject(s)
Quantitative Trait Loci , Sorghum , Chromosome Mapping , Phenotype , Plant Breeding , Polymorphism, Single Nucleotide , Sorghum/genetics
2.
BMC Plant Biol ; 19(1): 87, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30819116

ABSTRACT

BACKGROUND: Phosphorus (P) fixation on aluminum (Al) and iron (Fe) oxides in soil clays restricts P availability for crops cultivated on highly weathered tropical soils, which are common in developing countries. Hence, P deficiency becomes a major obstacle for global food security. We used multi-trait quantitative trait loci (QTL) mapping to study the genetic architecture of P efficiency and to explore the importance of root traits on sorghum grain yield on a tropical low-P soil. RESULTS: P acquisition efficiency was the most important component of P efficiency, and both traits were highly correlated with grain yield under low P availability. Root surface area was positively associated with grain yield. The guinea parent, SC283, contributed 58% of all favorable alleles detected by single-trait mapping. Multi-trait mapping detected 14 grain yield and/or root morphology QTLs. Tightly linked or pleiotropic QTL underlying the surface area of fine roots (1-2 mm in diameter) and grain yield were detected at positions 1-7 megabase pairs (Mb) and 71 Mb on chromosome 3, respectively, and a root diameter/grain yield QTL was detected at 7 Mb on chromosome 7. All these QTLs were near sorghum homologs of the rice serine/threonine kinase, OsPSTOL1. The SbPSTOL1 genes on chromosome 3, Sb03g006765 at 7 Mb and Sb03g031690 at 60 Mb were more highly expressed in SC283, which donated the favorable alleles at all QTLs found nearby SbPSTOL1 genes. The Al tolerance gene, SbMATE, may also influence a grain yield QTL on chromosome 3. Another PSTOL1-like gene, Sb07g02840, appears to enhance grain yield via small increases in root diameter. Co-localization analyses suggested a role for other genes, such as a sorghum homolog of the Arabidopsis ubiquitin-conjugating E2 enzyme, phosphate 2 (PHO2), on grain yield advantage conferred by the elite parent, BR007 allele. CONCLUSIONS: Genetic determinants conferring higher root surface area and slight increases in fine root diameter may favor P uptake, thereby enhancing grain yield under low-P availability in the soil. Molecular markers for SbPSTOL1 genes and for QTL increasing grain yield by non-root morphology-based mechanisms hold promise in breeding strategies aimed at developing sorghum cultivars adapted to low-P soils.


Subject(s)
Phosphorus/metabolism , Quantitative Trait Loci/genetics , Sorghum/metabolism , Edible Grain/metabolism , Plant Roots/metabolism , Soil , Sorghum/genetics
3.
Heredity (Edinb) ; 121(1): 24-37, 2018 07.
Article in English | MEDLINE | ID: mdl-29472694

ABSTRACT

Breeding for drought tolerance is a challenging task that requires costly, extensive, and precise phenotyping. Genomic selection (GS) can be used to maximize selection efficiency and the genetic gains in maize (Zea mays L.) breeding programs for drought tolerance. Here, we evaluated the accuracy of genomic selection (GS) using additive (A) and additive + dominance (AD) models to predict the performance of untested maize single-cross hybrids for drought tolerance in multi-environment trials. Phenotypic data of five drought tolerance traits were measured in 308 hybrids along eight trials under water-stressed (WS) and well-watered (WW) conditions over two years and two locations in Brazil. Hybrids' genotypes were inferred based on their parents' genotypes (inbred lines) using single-nucleotide polymorphism markers obtained via genotyping-by-sequencing. GS analyses were performed using genomic best linear unbiased prediction by fitting a factor analytic (FA) multiplicative mixed model. Two cross-validation (CV) schemes were tested: CV1 and CV2. The FA framework allowed for investigating the stability of additive and dominance effects across environments, as well as the additive-by-environment and the dominance-by-environment interactions, with interesting applications for parental and hybrid selection. Results showed differences in the predictive accuracy between A and AD models, using both CV1 and CV2, for the five traits in both water conditions. For grain yield (GY) under WS and using CV1, the AD model doubled the predictive accuracy in comparison to the A model. Through CV2, GS models benefit from borrowing information of correlated trials, resulting in an increase of 40% and 9% in the predictive accuracy of GY under WS for A and AD models, respectively. These results highlight the importance of multi-environment trial analyses using GS models that incorporate additive and dominance effects for genomic predictions of GY under drought in maize single-cross hybrids.


Subject(s)
Adaptation, Biological , Droughts , Genome, Plant , Genomics , Models, Genetic , Quantitative Trait, Heritable , Stress, Physiological/genetics , Algorithms , Environment , Gene-Environment Interaction , Genetic Markers , Genomics/methods , Genotype , Phenotype , Plant Breeding , Polymorphism, Single Nucleotide , Reproducibility of Results , Selection, Genetic
4.
BMC Genet ; 17(1): 138, 2016 10 18.
Article in English | MEDLINE | ID: mdl-27756221

ABSTRACT

BACKGROUND: The use of wood as an industrial raw material has led to development of plantation forestry, in which trees are planted, managed, and harvested as crops. The productivity of such plantations often exceeds that of less-intensively-managed forests, and land managers have the option of choosing specific planting stock to produce specific types of wood for industrial use. Stem forking, or division of the stem into two or more stems of roughly equal size, is a character trait important in determining the quality of the stem for production of solid wood products. This trait typically has very low individual-tree heritability, but can be more accurately assessed in clonally-replicated plantings where each genotype is represented by several individual trees. We report results from a quantitative trait mapping experiment in a clonally-replicated full-sibling family of loblolly pine (Pinus taeda L.). RESULTS: Quantitative trait loci influencing forking defects were identified in an outbred full-sibling family of loblolly pine, using single-nucleotide polymorphism markers. Genetic markers in this family segregated either in 1:2:1 (F2 intercross-like segregation) or 1:1 ratio (backcross-like segregation). An integrated linkage map combining markers with different segregation ratios was assembled for this full-sib family, and a total of 409 SNP markers were mapped on 12 linkage groups, covering 1622 cM. Two and three trait loci were identified for forking and ramicorn branch traits, respectively, using the interval mapping method. Three trait loci were detected for both traits using multiple-trait analysis. CONCLUSIONS: The detection of three loci for forking and ramicorn branching in a multiple-trait analysis could mean that there are genes with pleiotropic effects on both traits, or that separate genes affecting different traits are clustered together. The detection of genetic loci associated with variation in stem quality traits in this study supports the hypothesis that marker-assisted selection can be used to decrease the rate of stem defects in breeding populations of loblolly pine.


Subject(s)
Pedigree , Pinus taeda/genetics , Quantitative Trait Loci , Quantitative Trait, Heritable , Algorithms , Breeding , Chromosome Mapping , Genetic Association Studies , Genetic Linkage , Genetic Markers , Genotype , Models, Statistical , Phenotype , Polymorphism, Single Nucleotide
5.
Toxicon ; 93: 79-84, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25447775

ABSTRACT

In this work, we present recent advances in the use of phage display technology for the preparation of antivenoms for animal toxin neutralization. Even though classical antivenoms have been used since the early 20th century, envenomation remains a global public health problem. Recently, the phage display technique has been used in an attempt to circumvent some of the difficulties associated with traditional preparations of antivenom. Here, we review studies that developed antibody fragments with potential inhibitory effects against animal toxins and discuss the most current technical issues and perspectives regarding phage display technology in this field.


Subject(s)
Antibodies, Neutralizing/therapeutic use , Antivenins/therapeutic use , Cell Surface Display Techniques/methods , Models, Immunological , Snake Bites/drug therapy , Humans
6.
BMC Genet ; 13: 67, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22852865

ABSTRACT

BACKGROUND: Although many experiments have measurements on multiple traits, most studies performed the analysis of mapping of quantitative trait loci (QTL) for each trait separately using single trait analysis. Single trait analysis does not take advantage of possible genetic and environmental correlations between traits. In this paper, we propose a novel statistical method for multiple trait multiple interval mapping (MTMIM) of QTL for inbred line crosses. We also develop a novel score-based method for estimating genome-wide significance level of putative QTL effects suitable for the MTMIM model. The MTMIM method is implemented in the freely available and widely used Windows QTL Cartographer software. RESULTS: Throughout the paper, we provide compelling empirical evidences that: (1) the score-based threshold maintains proper type I error rate and tends to keep false discovery rate within an acceptable level; (2) the MTMIM method can deliver better parameter estimates and power than single trait multiple interval mapping method; (3) an analysis of Drosophila dataset illustrates how the MTMIM method can better extract information from datasets with measurements in multiple traits. CONCLUSIONS: The MTMIM method represents a convenient statistical framework to test hypotheses of pleiotropic QTL versus closely linked nonpleiotropic QTL, QTL by environment interaction, and to estimate the total genotypic variance-covariance matrix between traits and to decompose it in terms of QTL-specific variance-covariance matrices, therefore, providing more details on the genetic architecture of complex traits.


Subject(s)
Chromosome Mapping/methods , Crosses, Genetic , Inbreeding , Quantitative Trait Loci/genetics , Animals , Drosophila/genetics , Female , Male , Models, Genetic , Odds Ratio
7.
Ribeirão Preto; s.n; 2011. 56 p. tab.
Thesis in Portuguese | Sec. Est. Saúde SP, SESSP-CTDPROD, Sec. Est. Saúde SP, SESSP-ACVSES, SESSP-PAPSESSP, Sec. Est. Saúde SP | ID: biblio-1082269

ABSTRACT

As doenças parasitárias afetam de maneira adversa o desenvolvimento econômico e social em muitos países por constituírem um problema de saúde publica. O Brasil é um dos países campeões em doenças decorrentes da falta de saneamento básico, o que demonstra uma acentuada susceptibilidade às doenças parasitárias, 55,3% das crianças brasileiras estão parasitadas. Assim se justifica a importância do objetivo deste estudo em levantar as enteroparasitoses em crianças, com idades entre zero e dez anos, atendidas no Hospital das Clinicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo no período de Janeiro 2007 a Dezembro 2010. Os dados foram obtidos do Sistema Informatizado de Laboratório (LIS) provindos do Centro de Informações e Análises (CIA) selecionando os exames copropasitológicos do Setor de Fluídos Orgânicos do Laboratório Central de Patologia Clínica. Dos 2065 exames parasitológicos provenientes de 967 pacientes, observamos 84,0% de resultados negativos à presença de protozoários. A ocorrência de cistos de Giardia lamblia compreendeu 9,0%, com prevalência na faixa etária entre 1 e 4 anos. Para Endolimax nana, 3,3% das amostras foram positivas, 4% para Entamoeba coli e 0,1% para Entamoeba histolytica. Com relação aos helmintos, observamos 98,0% de resultados negativos e, 1,0% de ocorrências de ovos de Enterobius vermicularis, com prevalência na faixa etária entre 5 e 10 anos. A associação de duas ou mais parasitoses em um só hospedeiro – o poliparasitismo – foi também demonstrada neste estudo com 5,9% dos achados também na faixa etária de 5 a 10 anos. A baixa incidência pode estar relacionada com o padrão socioeconômico e cultural da região de Ribeirão Preto, que apresenta saneamento básico satisfatório, estação de tratamento de esgoto, 96,3% dos domicílios, incluindo as favelas com água encanada e tratada e a cidade é considerada centro de referência na saúde da região.


Subject(s)
Humans , Child , Parasitic Diseases , Statistics as Topic , Social Problems , Public Health
8.
J Biopharm Stat ; 20(2): 454-81, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20309768

ABSTRACT

Tremendous progress has been made in recent years on developing statistical methods for mapping quantitative trait loci (QTL) from crosses of inbred lines. Most of the recent research is focused on strategies for mapping multiple-QTL and associated model selection procedures and criterion. We review the progress of research in this area on one trait and multiple traits by maximum likelihood and Bayesian methods.


Subject(s)
Models, Statistical , Quantitative Trait Loci , Algorithms , Animals , Animals, Inbred Strains , Bayes Theorem , Crosses, Genetic , Data Interpretation, Statistical , Genome-Wide Association Study/statistics & numerical data , Genotype , Likelihood Functions , Phenotype , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...