Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Histochem ; 113(4): 442-52, 2011 Jul.
Article in English | MEDLINE | ID: mdl-20546857

ABSTRACT

The aim of this study was to characterize the compartmental distribution of sulfated glycosaminoglycans (S-GAGs) in adults and their occurrence during the development of the earthworm Eisenia andrei. S-GAGs were extracted from the body of earthworms to identify their composition and the time of their appearance and disappearance in embryonic, newborn, juvenile, and adult earthworms. S-GAGs were also analyzed in earthworm tissue using histochemical metachromatic staining. Purified S-GAGs obtained from the whole body of adult earthworms were composed of chondroitin sulfate (CS) and heparan sulfate (HS). In addition, an unknown, highly sulfated polysaccharide (HSP) was detected. In order to characterize specifically the S-GAG composition in the integument, earthworms were dissected and as much as possible of their viscera was removed. HS and CS were the predominant sulfated polysaccharides in the dissected integument, whereas in viscera, CS, HS and the HSP were found in proportions similar to those identified in the body. The qualitative S-GAG composition in juveniles was similar to that obtained from adult earthworms. CS was the predominant S-GAG in newborn earthworms, accompanied by lesser amounts of HS and by tiny amounts of the HSP. This study provides a detailed descriptive account of the pattern of S-GAG synthesis during development, and also the characterization of the tissue distribution of these compounds in the body of earthworms.


Subject(s)
Chondroitin Sulfates/analysis , Heparitin Sulfate/analysis , Oligochaeta/chemistry , Animals , Chondroitin Sulfates/chemistry , Heparitin Sulfate/chemistry , Histocytochemistry , Oligochaeta/embryology , Oligochaeta/growth & development , Tissue Distribution
2.
Eur J Biochem ; 271(4): 845-54, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14764101

ABSTRACT

Acharan sulfate, a recently discovered glycosaminoglycan isolated from Achatina fulica, has a major disaccharide repeating unit of -->4)-2-acetyl,2-deoxy-alpha-d-glucopyranose(1-->4)-2-sulfo-alpha-l-idopyranosyluronic acid (1-->, making it structurally related to both heparin and heparan sulfate. It has been suggested that this glycosaminoglycan is polydisperse, with an average molecular mass of 29 kDa and known minor disaccharide sequence variants containing unsulfated iduronic acid. Acharan sulfate was found to be located in the body of this species using alcian blue staining and it was suggested to be the main constituent of the mucus. In the present work, we provide further information on the structure and compartmental distribution of acharan sulfate in the snail body. Different populations of acharan sulfate presenting charge and/or molecular mass heterogeneities were isolated from the whole body, as well as from mucus and from the organic shell matrix. A minor glycosaminoglycan fraction susceptible to degradation by nitrous acid was also purified from the snail body, suggesting the presence of N-sulfated glycosaminoglycan molecules. In addition, we demonstrate the in vivo metabolic labeling of acharan sulfate in the snail body after a meal supplemented with [35S]free sulfate. This simple approach might be applied to the study of acharan sulfate biosynthesis. Finally, we developed histochemical assays to localize acharan sulfate in the snail body by metachromatic staining and by histoautoradiography following metabolic radiolabeling with [35S]sulfate. Our results show that acharan sulfate is widely distributed among several organs.


Subject(s)
Glycosaminoglycans/chemistry , Glycosaminoglycans/metabolism , Snails/chemistry , Animals , Glycosaminoglycans/isolation & purification , Molecular Weight , Mucus/chemistry , Mucus/metabolism , Nuclear Magnetic Resonance, Biomolecular , Snails/anatomy & histology , Snails/metabolism , Sulfur Radioisotopes , Tissue Distribution
3.
Insect Biochem Mol Biol ; 34(3): 251-60, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14871621

ABSTRACT

We have previously characterized heparan sulfate (HS) as the major ovarian sulfated glycosaminoglycan (GAG) in females of Rhodnius prolixus, while chondroitin sulfate (CS) was the minor component. Using histochemical procedures we found that GAGs were concentrated in the ovarian tissue but not found inside the oocytes. Here, we extend our initial observations of GAG expression in R. prolixus by characterizing these molecules in other organs: the fat body, intestinal tract, and the reproductive tracts. Only HS and CS were found in the three organs analyzed, however CS was the major GAG species in these tissues. We also determined the compartmental distribution of GAGs in these organs by histochemical analysis using 1,9-dimethylmethylene blue, and evaluated the specific distribution of CS within both male and female reproductive tracts by immunohistochemistry using an anti-CS antibody. We also determined the GAG composition in eggs at days 0 and 6 of embryonic development. Only HS and CS were found in eggs at day 6, while no sulfated GAGs were detected at day 0. Our results demonstrate that HS and CS are the only sulfated GAG species expressed in the fat body and in the intestinal and reproductive tracts of Rhodnius male and female adults. Both sulfated GAGs were also identified in Rhodnius embryos. Altogether, these results show no qualitative differences in the sulfated GAG composition regarding tissue-specific or development-specific distribution.


Subject(s)
Glycosaminoglycans/metabolism , Rhodnius/metabolism , Animals , Chondroitin Sulfates/metabolism , Fat Body/metabolism , Female , Heparitin Sulfate/metabolism , Immunohistochemistry , Male , Oogenesis , Rhodnius/growth & development , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...