Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
J Inorg Biochem ; 226: 111658, 2022 01.
Article in English | MEDLINE | ID: mdl-34781206

ABSTRACT

Chloro(glycinato-N,O)(1,10-phenanthroline-N,N')­copper(II) trihydrate complex was synthesized through the slow evaporation method. The crystal's structural, thermal, magnetic, and vibrational properties were obtained by X-ray powder diffraction (XRPD), thermal analyses, magnetization, Raman, and Fourier-transform infrared (FT-IR) spectroscopy. XRPD results showed that the crystalline complex belongs to a monoclinic system (P21/n). Thermal analyses revealed that around 333 K, the material undergoes a thermodynamically irreversible process. Magnetic data showed a paramagnetic behavior with weak ferromagnetic interactions. Moreover, all the Raman- and infrared-active bands were assigned from computational calculations based on the density functional theory (DFT) to analyze intra-molecular vibrational modes. In addition, the cytotoxic assay on colorectal cancer cells was performed to evaluate the antitumor activity of this ternary compound. Therefore, the antineoplastic activity of [Cu(1,10-phenanthroline)(glycine)Cl]•3H2O complex in HCT-116 cells was confirmed, showing a potent cytotoxic effect.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Coordination Complexes , Copper , Cytotoxins , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Copper/chemistry , Copper/pharmacology , Cytotoxins/chemistry , Cytotoxins/pharmacology , HCT116 Cells , Humans , Mice , RAW 264.7 Cells
2.
Chem Commun (Camb) ; 54(16): 1952-1955, 2018 Feb 20.
Article in English | MEDLINE | ID: mdl-29323379

ABSTRACT

Metabolomic profiles were explored to understand environmental and taxonomic influences on the metabolism of two congeneric zoanthids, Palythoa caribaeorum and P. variabilis, collected across distinct geographical ranges. Integrated mass spectrometry data suggested the major influence of geographical location on chemical divergence when compared to species differentiation.


Subject(s)
Anthozoa/chemistry , Anthozoa/metabolism , Metabolomics , Animals , Brazil , Geography , Mass Spectrometry , Molecular Structure , Species Specificity
3.
Toxicol In Vitro ; 47: 129-136, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29174024

ABSTRACT

The use of natural products in therapeutics has been growing over the years. Lignans are compounds with large pharmaceutical use, which has aroused interest in the search for new drugs to treat diseases. The present study evaluated the cytotoxicity of (-)-trachelogenin, a dibenzylbutyrolactone type lignan isolated from Combretum fruticosum, against several tumor and non-tumor cell lines using the MTT assay and its possible mechanism of action. (-)-Trachelogenin showed IC50 values ranging of 0.8-32.4µM in SF-295 and HL-60 cell lines, respectively and IC50 values >64µM in non-tumor cell lines. (-)-trachelogenin persistently induced autophagic cell death, with cytoplasmic vacuolization and formation of autophagosomes mediated by increasing LC3 activation and altering the expression levels of Beclin-1.


Subject(s)
4-Butyrolactone/analogs & derivatives , Antineoplastic Agents, Phytogenic/pharmacology , Autophagy/drug effects , Colonic Neoplasms/drug therapy , Combretum/chemistry , Drug Discovery , Plant Stems/chemistry , 4-Butyrolactone/adverse effects , 4-Butyrolactone/chemistry , 4-Butyrolactone/isolation & purification , 4-Butyrolactone/pharmacology , Antineoplastic Agents, Phytogenic/adverse effects , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Autophagosomes/drug effects , Autophagosomes/pathology , Beclin-1/agonists , Beclin-1/metabolism , Brazil , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Colonic Neoplasms/pathology , Combretum/growth & development , Ethnopharmacology , HCT116 Cells , Humans , Inhibitory Concentration 50 , Medicine, Traditional , Microtubule-Associated Proteins/agonists , Microtubule-Associated Proteins/metabolism , Molecular Structure , Neoplasm Proteins/agonists , Neoplasm Proteins/metabolism , Plant Stems/growth & development , Vacuoles/drug effects , Vacuoles/pathology
4.
Toxicol In Vitro ; 26(4): 585-94, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22386657

ABSTRACT

In this study, the cytotoxicity, genotoxicity and early ROS generation of 2,2-dimethyl-(3H)-3-(N-3'-nitrophenylamino)naphtho[1,2-b]furan-4,5-dione (QPhNO(2)) were investigated and compared with those of its precursor, nor-beta-lapachone (nor-beta), with the main goal of proposing a mechanism of antitumor action. The results were correlated with those obtained from electrochemical experiments held in protic (acetate buffer pH 4.5) and aprotic (DMF/TBABF(4)) media in the presence and absence of oxygen and with those from dsDNA biosensors and ssDNA in solution, which provided evidence of a positive interaction with DNA in the case of QPhNO(2). QPhNO(2) caused DNA fragmentation and mitochondrial depolarization and induced apoptosis/necrosis in HL-60 cells. Pre-treatment with N-acetyl-l-cysteine partially abolished the observed effects related to the QPhNO(2) treatment, including those involving apoptosis induction, indicating a partially redox-dependent mechanism. These findings point to the potential use of the combination of pharmacology and electrochemistry in medicinal chemistry.


Subject(s)
Antineoplastic Agents/pharmacology , Benzofurans/pharmacology , Naphthoquinones/pharmacology , Apoptosis/drug effects , Cell Survival/drug effects , Comet Assay , DNA Damage , HL-60 Cells , Humans , Oxidation-Reduction , Reactive Oxygen Species/metabolism
5.
Mutat Res ; 701(2): 153-63, 2010 Aug 30.
Article in English | MEDLINE | ID: mdl-20599626

ABSTRACT

Kaurane diterpenes are considered important compounds in the development of new highly effective anticancer chemotherapeutic agents. Genotoxic effects of anticancer drugs in non-tumour cells are of special significance due to the possibility that they induce secondary tumours in cancer patients. In this context, we evaluated the genotoxic and mutagenic potential of the natural diterpenoid kaurenoic acid (KA), i.e. (-)-kaur-16-en-19-oic acid, isolated from Xylopia sericeae St. Hill, using several standard in vitro and in vivo protocols (comet, chromosomal aberration, micronucleus and Saccharomyces cerevisiae assays). Also, an analysis of structure-activity relationships was performed with two natural diterpenoid compounds, 14-hydroxy-kaurane (1) and xylopic acid (2), isolated from X. sericeae, and three semi-synthetic derivatives of KA (3-5). In addition, considering the importance of the exocyclic double bond (C16) moiety as an active pharmacophore of KA cytotoxicity, we also evaluated the hydrogenated derivative of KA, (-)-kauran-19-oic acid (KAH), to determine the role of the exocyclic bond (C16) in the genotoxic activity of KA. In summary, the present study shows that KA is genotoxic and mutagenic in human peripheral blood leukocytes (PBLs), yeast (S. cerevisiae) and mice (bone marrow, liver and kidney) probably due to the generation of DNA double-strand breaks (DSB) and/or inhibition of topoisomerase I. Unlike KA, compounds 1-5 and KAH are completely devoid of genotoxic and mutagenic effects under the experimental conditions used in this study, suggesting that the exocyclic double bond (C16) moiety may be the active pharmacophore of the genetic toxicity of KA.


Subject(s)
Diterpenes/chemistry , Diterpenes/toxicity , Mutagens/toxicity , Plant Extracts/toxicity , Animals , Cell Line, Tumor , Humans , Male , Mice , Mutagenicity Tests , Structure-Activity Relationship
6.
Hum Exp Toxicol ; 29(3): 235-40, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20071475

ABSTRACT

The leukaemia cell line HL60 is widely used in studies of the cell cycle, apoptosis and adhesion mechanisms in cancer cells. One marked characteristic of HL60 cells is the c-MYC proto-oncogene amplification, resulting in the formation of homogeneously staining regions (HSRs) at 8p24. We conducted a fluorescence in situ hybridization study in an HL60 cell line, using a locus-specific probe for c-MYC, before and after treatment with pisosterol (at 0.5, 1.0 and 1.8 microg/mL), a triterpene isolated from the fungus Pisolithus tinctorius. Before treatment, 87.5% of the cells showed HSRs. After treatment, no effects were detected at lower concentrations of pisosterol (0.5 and 1.0 microg/mL). However, at 1.8 microg/mL only 15% of the cells presented HSRs, and 39.5% presented few fluorescent signals (3 or 4 alleles), suggesting that pisosterol probably blocks the cells with HSRs at interphase. This result is particularly interesting because cells that do not show a high degree of c-MYC gene amplification have a less aggressive and invasive behaviour and are easy targets for chemotherapy. Therefore, further studies are needed to examine the use of pisosterol in combination with conventional anti-cancer therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Gene Amplification , Gene Expression Regulation, Neoplastic , Interphase , Proto-Oncogene Proteins c-myc/genetics , Terpenes/pharmacology , Cell Survival/drug effects , Dose-Response Relationship, Drug , HL-60 Cells , Humans , In Situ Hybridization, Fluorescence , Proto-Oncogene Mas
7.
Phytomedicine ; 16(11): 1059-63, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19423311

ABSTRACT

The alkaloid extract and five alkaloids isolated from subterranean stem bark of Duguetia furfuracea (Annonaceae) were investigated for the following activities: antitumoral, trypanocidal and leishmanicidal. Dicentrinone showed weak cytotoxicity, but it had the strongest leishmanicidal activity (IC(50) 0.01 microM). Duguetine and duguetine beta-N-oxide caused considerable antitumoral activity in every cell lines evaluated, although duguetine was more active against trypomastigote forms (IC(50) 9.32 microM) than other alkaloids tested.


Subject(s)
Alkaloids/pharmacology , Annonaceae/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Leishmania braziliensis/drug effects , Trypanocidal Agents/isolation & purification , Alkaloids/isolation & purification , Aporphines/isolation & purification , Aporphines/pharmacology , Cell Line, Tumor , Humans , Molecular Structure , Plant Extracts/pharmacology , Trypanosoma cruzi/drug effects
8.
Cell Biol Toxicol ; 25(3): 245-51, 2009 Jun.
Article in English | MEDLINE | ID: mdl-18465199

ABSTRACT

The leukemia cell line HL60 is widely used in studies of the cell cycle, apoptosis, and adhesion mechanisms in cancer cells. We conducted a focused cytogenetic study in an HL60 cell line, by analyzing GTG-banded chromosomes before and after treatment with pisosterol (at 0.5, 1.0, and 1.8 microg/ml), a triterpene isolated from Pisolithus tinctorius, a fungus collected in the Northeast of Brazil. Before treatment, 99% of the cells showed the homogeneously staining region (HSR) 8q24 aberration. After treatment with 1.8 microg/ml pisosterol, 90% of the analyzed cells lacked this aberration. We further performed a pulse test, in which the cells treated with pisosterol (0.5, 1.0, and 1.8 microg/ml) were washed and re-incubated in the absence of pisosterol. Only 30% of the analyzed cells lacked the HSR 8q24 aberration, suggesting that pisosterol probably blocks the cells with HSRs at interphase. No effects were detected at lower concentrations. At the highest concentration examined (1.8 microg/ml), pisosterol also inhibited cell growth, but this effect was not observed in the pulse test, reinforcing our hypothesis that, at the concentrations tested, pisosterol probably does not induce cell death in the HL60 line. The results found for pisosterol were compared with those for doxorubicin. Cells that do not show a high degree of gene amplification (HSRs and double-minute chromosomes) have a less aggressive and invasive behavior and are easy targets for chemotherapy. Therefore, further studies are needed to examine the use of pisosterol in combination with conventional anti-cancer therapy.


Subject(s)
Antineoplastic Agents/toxicity , Basidiomycota/chemistry , Cell Cycle/drug effects , Gene Amplification/drug effects , HL-60 Cells/drug effects , Leukemia, Promyelocytic, Acute/drug therapy , Terpenes/toxicity , Chromosome Aberrations/drug effects , Chromosome Banding , Doxorubicin/toxicity , Drug Screening Assays, Antitumor , HL-60 Cells/physiology , Humans , Mitotic Index , Plant Extracts/toxicity
9.
Toxicol In Vitro ; 22(4): 1032-7, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18258413

ABSTRACT

Manganese (Mn) has a natural occurrence and is necessary during the initial periods of the development. However, in high concentrations, Mn can be related to neurodegenerative disorders. The aim of the present study was to evaluate the mutagenic potential of manganese chloride (MnCl2.4H2O). Comet assay and chromosome aberrations analysis were applied to determine the DNA-damaging and clastogenic effects of MnCl2.4H2O. Cultured human lymphocytes were treated with 15, 20 and 25 microM manganese chloride during the G1, G1/S, S (pulses of 1 and 6h), and G2 phases of the cell cycle. All tested concentrations were cytotoxic and reduced significantly the mitotic index in G1, G1/S and S (1 and 6h) treatments, while in G2 treatment only the higher concentrations (20 and 25 microM) showed cytotoxic effects. Clastogenicity and DNA damage were found only in treatments with the highest concentration (25 microM). Chromosome aberrations were found exclusively in the G2 phase of the cell cycle. The absence of polyploidy in mitosis, suggests that manganese does not affect the formation of the mitotic spindle with the concentrations tested. The genotoxicity found in G2 phase and in the comet assay can be related to the short time of treatment in both cases.


Subject(s)
Cell Cycle/drug effects , Chlorides/toxicity , Environmental Pollutants/toxicity , Lymphocytes/drug effects , Cells, Cultured , Chlorides/administration & dosage , Chromosome Aberrations/drug effects , Comet Assay , Environmental Pollutants/administration & dosage , Humans , Lymphocytes/metabolism , Manganese Compounds/administration & dosage , Mitotic Index , Mutagenicity Tests , Mutagens/administration & dosage , Mutagens/toxicity , Time Factors
10.
Toxicol In Vitro ; 22(3): 723-9, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18171608

ABSTRACT

Iron (Fe) is a common chemical element that is essential for organisms as a co-factor in oxygen transport, but that in high amounts presents a significant risk of neurodegenerative disorders. The objective of this study was to evaluate the mutagenic potential of iron sulfate. The comet assay and chromosome aberration (CA) analysis were applied to determine the DNA-damaging and clastogenic effects of iron sulfate. Human lymphocytes were treated in the quiescent phase for the comet assay and proliferative phase during the G1, G1/S, S (pulses of 1 and 6 h), and G2 phases of the cell cycle for CA analysis, with 1.25, 2.5 and 5 microg/mL concentrations of FeSO(4).7H2O. All tested concentrations were cytotoxic and reduced significantly the mitotic index (MI) in all phases of the cell cycle. They also induced CA in G1, G1/S and S (pulses of 1 and 6 h) phases. Iron sulfate also induced polyploidy in cells treated during G1. In the comet assay, this metal did not induce significant DNA damage. Our results show that Fe causes alteration and inhibition of DNA synthesis only in proliferative cells, which explain the concomitant occurrence of mutagenicity and cytotoxicity, respectively, in the lymphocytes studied.


Subject(s)
Cell Cycle/physiology , Cell Survival/drug effects , Ferric Compounds/toxicity , Lymphocytes/drug effects , Mutagens , Cell Proliferation/drug effects , Cells, Cultured , Chromosome Aberrations/drug effects , Comet Assay , DNA Damage/drug effects , G1 Phase/drug effects , Humans , Mitotic Index , S Phase/drug effects
11.
Food Chem Toxicol ; 46(1): 388-92, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17897764

ABSTRACT

The genotoxic effect of two tanshinones isolated from roots of Hyptis martiussi Benth (Labiatae) was studied using V79 (Chinese hamster lung) cells by the alkaline comet assay and micronucleus test. Tanshinones were incubated with the cells at concentrations of 1, 3, 6 and 12 microg/mL for 3 h. Tanshinones were shown to be quite strongly genotoxic against V79 cells at all tested concentrations. The data obtained provide support to the view that tanshinones has DNA damaging activity in cultured V79 cells under the conditions of the assays.


Subject(s)
Antioxidants/therapeutic use , Carbon Tetrachloride Poisoning/prevention & control , Chemical and Drug Induced Liver Injury/prevention & control , Flavonoids/therapeutic use , Animals , Blood Chemical Analysis , Carbon Tetrachloride Poisoning/pathology , Catalase/metabolism , Chemical and Drug Induced Liver Injury/pathology , Fatty Liver/chemically induced , Fatty Liver/pathology , Glutathione/metabolism , Glutathione Transferase/metabolism , Hepatocytes/drug effects , Hepatocytes/pathology , Lipid Peroxidation/drug effects , Liver/pathology , Male , Malondialdehyde/metabolism , Oxidative Stress/drug effects , Plant Extracts , Rats , Rats, Sprague-Dawley , Superoxide Dismutase/metabolism , Thiobarbituric Acid Reactive Substances/metabolism
12.
Protein Pept Lett ; 14(9): 886-93, 2007.
Article in English | MEDLINE | ID: mdl-18045231

ABSTRACT

Effects of plant lectins on sea urchin (Lytechinus variegatus) fertilization and a partial characterization of lectin-binding involved in the process were evaluated. IC50 doses for inhibition of fertilization varied from 4.1 to 135.5 microg/ml when the lectins were pre-incubated with sperms and from 0.7 to 33.4 microg/ml when pre-incubated with eggs. Such effects were reversed when the lectins were heat inactivated. FITC-labeled lectins bound egg surfaces while their denatured forms did not. Glucose/mannose specific lectins bound weaker to eggs when pre-incubated with the glycoprotein bovine lactotransferrin. None of the glycoproteins assayed diminished FITC patterns of the Gal/GalNAc binding lectins. Pre-incubation of Glucose/mannose binding lectins with eggs did not alter binding of Gal/GalNAc lectins. Lectins with distinct competencies for binding monosaccharide and glycoconjugates were able to inhibit sea urchin fertilization.


Subject(s)
Fertilization/drug effects , Lytechinus/drug effects , Lytechinus/physiology , Plant Lectins/pharmacology , Animals , Female , Fluorescein-5-isothiocyanate , Fluorescence , Fluorescent Dyes , Inhibitory Concentration 50 , Male , Monosaccharides/pharmacology , Ovum/drug effects , Ovum/physiology , Plant Lectins/metabolism , Protein Binding , Spermatozoa/drug effects , Spermatozoa/physiology
13.
Food Chem Toxicol ; 45(7): 1154-9, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17321660

ABSTRACT

Aluminum (Al) is the most abundant metal and the third common chemical element on earth. It is known that Al is toxic, especially its trivalent form (Al(3+)), that represents the its most soluble form. Al intoxication is related to some pathogenic disorders, principally neurodegeneratives ones as Parkinson and Alzheimer diseases. The present study aimed to evaluate the mutagenic potential of aluminum chloride (AlCl(3)). Comet assay and chromosome aberrations analysis were applied to evaluate the DNA-damaging and clastogenic effects of AlCl(3), respectively, in different phases of the cell cycle. Cultured human lymphocytes were treated with 5, 10, 15 and 25 microM aluminum chloride during the G1, G1/S, S (pulses of 1 and 6h), and G2 phases of the cell cycle. All tested concentrations were cytotoxic and reduced significantly the mitotic index in all phases of cell cycle. They also induced DNA damage and were clastogenic in all phases of cell cycle, specially in S phase. AlCl(3) also induced endoreduplication and polyploidy in treatments performed during G1 phase. The presence of genotoxicity and polyploidy on interphase and mitosis, respectively, suggests that aluminum chloride is clastogenic and indirectly affects the construction of mitotic fuse in all tested concentrations.


Subject(s)
Aluminum Compounds/toxicity , Aneugens/toxicity , Cell Cycle/drug effects , Chlorides/toxicity , Environmental Pollutants/toxicity , Lymphocytes/drug effects , Aluminum Chloride , Cell Survival/drug effects , Cells, Cultured , Chromosome Aberrations , Comet Assay , DNA Damage , Dose-Response Relationship, Drug , Humans , Lymphocytes/pathology , Polyploidy
14.
Braz J Med Biol Res ; 39(6): 801-7, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16751987

ABSTRACT

Piplartine {5,6-dihydro-1-[1-oxo-3-(3,4,5-trimethoxyphenyl)-2-propenyl]-2(1H)pyridinone} and piperine {1-5-(1,3)-benzodioxol-5-yl)-1-oxo-2,4-pentadienyl]piperidine} are alkaloid amides isolated from Piper. Both have been reported to show cytotoxic activity towards several tumor cell lines. In the present study, the in vivo antitumor activity of these compounds was evaluated in 60 female Swiss mice (N = 10 per group) transplanted with Sarcoma 180. Histopathological and morphological analyses of the tumor and the organs, including liver, spleen, and kidney, were performed in order to evaluate the toxicological aspects of the treatment with these amides. Administration of piplartine or piperine (50 or 100 mg kg(-1) day(-1) intraperitoneally for 7 days starting 1 day after inoculation) inhibited solid tumor development in mice transplanted with Sarcoma 180 cells. The inhibition rates were 28.7 and 52.3% for piplartine and 55.1 and 56.8% for piperine, after 7 days of treatment, at the lower and higher doses, respectively. The antitumor activity of piplartine was related to inhibition of the tumor proliferation rate, as observed by reduction of Ki67 staining, a nuclear antigen associated with G1, S, G2, and M cell cycle phases, in tumors from treated animals. However, piperine did not inhibit cell proliferation as observed in Ki67 immunohistochemical analysis. Histopathological analysis of liver and kidney showed that both organs were reversibly affected by piplartine and piperine treatment, but in a different way. Piperine was more toxic to the liver, leading to ballooning degeneration of hepatocytes, accompanied by microvesicular steatosis in some areas, than piplartine which, in turn, was more toxic to the kidney, leading to discrete hydropic changes of the proximal tubular and glomerular epithelium and tubular hemorrhage in treated animals.


Subject(s)
Alkaloids/therapeutic use , Antineoplastic Agents, Phytogenic/therapeutic use , Benzodioxoles/therapeutic use , Piper/chemistry , Piperidines/therapeutic use , Piperidones/therapeutic use , Polyunsaturated Alkamides/therapeutic use , Sarcoma 180/drug therapy , Alkaloids/isolation & purification , Alkaloids/toxicity , Animals , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/toxicity , Benzodioxoles/isolation & purification , Benzodioxoles/toxicity , Cell Proliferation/drug effects , Disease Models, Animal , Female , Kidney/drug effects , Kidney/pathology , Liver/drug effects , Liver/pathology , Mice , Neoplasm Transplantation , Piperidines/isolation & purification , Piperidines/toxicity , Piperidones/isolation & purification , Piperidones/toxicity , Plant Extracts/isolation & purification , Plant Extracts/therapeutic use , Plant Extracts/toxicity , Plant Roots/chemistry , Polyunsaturated Alkamides/isolation & purification , Polyunsaturated Alkamides/toxicity , Sarcoma 180/pathology , Spleen/drug effects , Spleen/pathology
15.
Braz. j. med. biol. res ; 39(6): 801-807, June 2006. ilus, tab
Article in English | LILACS | ID: lil-428281

ABSTRACT

Piplartine {5,6-dihydro-1-[1-oxo-3-(3,4,5-trimethoxyphenyl)-2-propenyl]-2(1H)pyridinone} and piperine {1-5-(1,3)-benzodioxol-5-yl)-1-oxo-2,4-pentadienyl]piperidine} are alkaloid amides isolated from Piper. Both have been reported to show cytotoxic activity towards several tumor cell lines. In the present study, the in vivo antitumor activity of these compounds was evaluated in 60 female Swiss mice (N = 10 per group) transplanted with Sarcoma 180. Histopathological and morphological analyses of the tumor and the organs, including liver, spleen, and kidney, were performed in order to evaluate the toxicological aspects of the treatment with these amides. Administration of piplartine or piperine (50 or 100 mg kg-1 day-1 intraperitoneally for 7 days starting 1 day after inoculation) inhibited solid tumor development in mice transplanted with Sarcoma 180 cells. The inhibition rates were 28.7 and 52.3 percent for piplartine and 55.1 and 56.8 percent for piperine, after 7 days of treatment, at the lower and higher doses, respectively. The antitumor activity of piplartine was related to inhibition of the tumor proliferation rate, as observed by reduction of Ki67 staining, a nuclear antigen associated with G1, S, G2, and M cell cycle phases, in tumors from treated animals. However, piperine did not inhibit cell proliferation as observed in Ki67 immunohistochemical analysis. Histopathological analysis of liver and kidney showed that both organs were reversibly affected by piplartine and piperine treatment, but in a different way. Piperine was more toxic to the liver, leading to ballooning degeneration of hepatocytes, accompanied by microvesicular steatosis in some areas, than piplartine which, in turn, was more toxic to the kidney, leading to discrete hydropic changes of the proximal tubular and glomerular epithelium and tubular hemorrhage in treated animals.


Subject(s)
Animals , Female , Mice , Alkaloids/therapeutic use , Antineoplastic Agents, Phytogenic/therapeutic use , Benzodioxoles/therapeutic use , Piper/chemistry , Piperidines/therapeutic use , Piperidones/therapeutic use , Polyunsaturated Alkamides/therapeutic use , /drug therapy , Alkaloids/isolation & purification , Alkaloids/toxicity , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/toxicity , Benzodioxoles/isolation & purification , Benzodioxoles/toxicity , Cell Proliferation/drug effects , Disease Models, Animal , Kidney/drug effects , Kidney/pathology , Liver/drug effects , Liver/pathology , Neoplasm Transplantation , Piperidines/isolation & purification , Piperidines/toxicity , Piperidones/isolation & purification , Piperidones/toxicity , Plant Extracts/isolation & purification , Plant Extracts/therapeutic use , Plant Extracts/toxicity , Plant Roots/chemistry , Polyunsaturated Alkamides/isolation & purification , Polyunsaturated Alkamides/toxicity , /pathology , Spleen/drug effects , Spleen/pathology
16.
Food Chem Toxicol ; 44(3): 388-92, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16182426

ABSTRACT

Copaiba oil extracted from the Amazon traditional medicinal plant Copaifera langsdorffii is rich in kaurenoic acid (ent-kaur-16-en-19-oic acid), a diterpene that has been shown to exert anti-inflammatory, hypotensive, and diuretic effects in vivo and antimicrobial, smooth muscle relaxant and cytotoxic actions in vitro. This study evaluated its potential genotoxicity against Chinese hamster lung fibroblast (V79) cells in vitro, using the Comet and the micronucleus assays. Kaurenoic acid was tested at concentrations of 2.5, 5,10, 30 and 60 microg/mL. The positive control was the methylmethanesulfonate (MMS). The duration of the treatment of V79 cells with these agents was 3h. The results showed that unlike MMS, kaurenoic acid (2.5, 5, and 10 microg/mL) failed to induce significantly elevated cell DNA damage or the micronucleus frequencies in the studied tests. However, exposure of V79 cells to higher concentrations of kaurenoic acid (30 and 60 microg/mL) caused significant increases in cell damage index and frequency. The data obtained provide support to the view that the diterpene kaurenoic acid induces genotoxicity.


Subject(s)
Antineoplastic Agents, Alkylating/toxicity , DNA Damage/drug effects , Diterpenes/toxicity , Fabaceae , Animals , Antineoplastic Agents, Alkylating/therapeutic use , Comet Assay , Cricetinae , Cricetulus , Diterpenes/therapeutic use , Dose-Response Relationship, Drug , Fabaceae/chemistry , Lung Neoplasms/drug therapy , Methyl Methanesulfonate/toxicity , Micronucleus Tests , Mutagenicity Tests , Phytotherapy , Plant Extracts/therapeutic use , Plant Extracts/toxicity , Tumor Cells, Cultured
17.
Pharmazie ; 59(1): 78-9, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14964430

ABSTRACT

Two abietane diterpenes were isolated from a hexane extract of Hyptis martiusii roots and identified as carnasol 11,14-dihidroxy-8,11,13-abietatrien-7-one. These compounds were tested for their antiproliferative effects on tumor cell lines using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide and on the sea urchin egg development. Both compounds displayed cytotoxic activity against tumor cell lines, but only carnasol was able to inhibit the sea urchin egg cleavages.


Subject(s)
Abietanes/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Hyptis/chemistry , Abietanes/isolation & purification , Animals , Antineoplastic Agents, Phytogenic/isolation & purification , Brazil , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Mitosis/drug effects , Ovum/drug effects , Sea Urchins
18.
Pharmazie ; 59(12): 965-6, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15638088

ABSTRACT

The present study evaluated the cytotoxic activity of nepetin and quercetin-3-O-glucoside, compounds isolated from the aerial parts of Eupatorium ballotaefolium. The antimitotic activity was determined as the ability to inhibit sea urchin eggs development and five tumor cells lines growth. Moreover, the activities of these compounds were compared to quercetin in the same models. Nepetin inhibited the proliferation of the five tumor cell lines, once quercetin-3-O-glucoside did not present any activity even at the highest tested concentration and quercetin only inhibited proliferation of the B16 cell line. On the sea urchin assay, nepetin and quercetin induced a dose-dependent inhibition on egg development, while quercetin-3-O-glucoside did not modify normalegg cleavage, even at the highest tested concentration (100 microg/ml).


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Eupatorium/chemistry , Flavonoids/pharmacology , Quercetin/analogs & derivatives , Quercetin/pharmacology , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Flavones , Humans , Sea Urchins
19.
Braz J Med Biol Res ; 35(8): 927-30, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12185385

ABSTRACT

Auxemma oncocalyx Taub. belongs to the Boraginaceae family and is native to the Brazilian northeast where it is known as "pau-branco". We investigated the ability of the water soluble fraction isolated from the heartwood of A. oncocalyx to inhibit sea urchin egg development. This fraction contains about 80% oncocalyxone A (quinone fraction), a compound known to possess strong cytotoxic and antitumor activities. In fact, the quinone fraction inhibited cleavage in a dose-dependent manner [IC50 of 18.4 (12.4-27.2) microg/ml, N = 6], and destroyed the embryos in the blastula stage [IC50 of 16.2 (13.7-19.2) microg/ml, N = 6]. We suggest that this activity is due to the presence of oncocalyxone A. In fact, these quinones present in A. oncocalyx extract have strong toxicity related to their antimitotic activity.


Subject(s)
Anthraquinones/toxicity , Boraginaceae/chemistry , Ovum/drug effects , Quinones/toxicity , Animals , Anthraquinones/isolation & purification , Antineoplastic Agents/toxicity , DNA Damage , Plant Extracts/toxicity , Quinones/isolation & purification , Sea Urchins
20.
Toxicon ; 40(8): 1231-234, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12165328

ABSTRACT

In this work, we studied the effects of kaurenoic acid, a diterpene isolated from the oleo-resin of Copaifera langsdorffii in developing sea urchin (Lytechinus variegatus) embryos, on tumor cell growth in microculture tetrazolium (MTT) test and on mouse and human erythrocytes in hemolysis assay. Continuous exposure of embryos to kaurenoic acid starting immediately after fertilization inhibited the first cleavage (IC(50): 84.2 microM) and progressively induced embryo destruction (IC(50): 44.7 microM and < 10 microM for blastulae and larvae stages, respectively). In MTT assay, kaurenoic acid at a concentration of 78 microM produced growth inhibition of CEM leukemic cells by 95%, MCF-7 breast and HCT-8 colon cancer cells by 45% each. Further, kaurenoic acid induced a dose-dependent hemolysis of mouse and human erythrocytes with an EC(50) of 74.0 and 56.4 microM, respectively. The destruction of sea urchin embryos, the inhibition of tumor cell growth and the hemolysis of mouse and human erythrocytes indicate the potential cytotoxicity of kaurenoic acid.


Subject(s)
Cytotoxins/toxicity , Diterpenes/toxicity , Plants, Medicinal/chemistry , Resins, Plant/chemistry , Sea Urchins/physiology , Teratogens/toxicity , Animals , Cell Survival/drug effects , Cytotoxins/chemistry , Diterpenes/chemistry , Embryo, Nonmammalian , Erythrocytes/drug effects , Hemolysis/drug effects , Humans , In Vitro Techniques , Magnetic Resonance Spectroscopy , Mice , Teratogens/chemistry , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...