Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37808638

ABSTRACT

Nirmatrelvir was the first protease inhibitor (PI) specifically developed against the SARS-CoV-2 main protease (3CLpro/Mpro) and licensed for clinical use. As SARS-CoV-2 continues to spread, variants resistant to nirmatrelvir and other currently available treatments are likely to arise. This study aimed to identify and characterize mutations that confer resistance to nirmatrelvir. To safely generate Mpro resistance mutations, we passaged a previously developed, chimeric vesicular stomatitis virus (VSV-Mpro) with increasing, yet suboptimal concentrations of nirmatrelvir. Using Wuhan-1 and Omicron Mpro variants, we selected a large set of mutants. Some mutations are frequently present in GISAID, suggesting their relevance in SARS-CoV-2. The resistance phenotype of a subset of mutations was characterized against clinically available PIs (nirmatrelvir and ensitrelvir) with cell-based and biochemical assays. Moreover, we showed the putative molecular mechanism of resistance based on in silico molecular modelling. These findings have implications on the development of future generation Mpro inhibitors, will help to understand SARS-CoV-2 protease-inhibitor-resistance mechanisms and show the relevance of specific mutations in the clinic, thereby informing treatment decisions.

2.
Sci Adv ; 9(13): eade8778, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36989354

ABSTRACT

Vaccines and drugs have helped reduce disease severity and blunt the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, ongoing virus transmission, continuous evolution, and increasing selective pressures have the potential to yield viral variants capable of resisting these interventions. Here, we investigate the susceptibility of natural variants of the main protease [Mpro; 3C-like protease (3CLpro)] of SARS-CoV-2 to protease inhibitors. Multiple single amino acid changes in Mpro confer resistance to nirmatrelvir (the active component of Paxlovid). An additional clinical-stage inhibitor, ensitrelvir (Xocova), shows a different resistance mutation profile. Importantly, phylogenetic analyses indicate that several of these resistant variants have pre-existed the introduction of these drugs into the human population and are capable of spreading. These results encourage the monitoring of resistance variants and the development of additional protease inhibitors and other antiviral drugs with different mechanisms of action and resistance profiles for combinatorial therapy.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Protease Inhibitors/chemistry , Phylogeny , Peptide Hydrolases
3.
Sci Transl Med ; 15(678): eabq7360, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36194133

ABSTRACT

Protease inhibitors are among the most powerful antiviral drugs. Nirmatrelvir is the first protease inhibitor specifically developed against the SARS-CoV-2 protease 3CLpro that has been licensed for clinical use. To identify mutations that confer resistance to this protease inhibitor, we engineered a chimeric vesicular stomatitis virus (VSV) that expressed a polyprotein composed of the VSV glycoprotein (G), the SARS-CoV-2 3CLpro, and the VSV polymerase (L). Viral replication was thus dependent on the autocatalytic processing of this precursor protein by 3CLpro and release of the functional viral proteins G and L, and replication of this chimeric VSV was effectively inhibited by nirmatrelvir. Using this system, we applied nirmatrelvir to select for resistance mutations. Resistance was confirmed by retesting nirmatrelvir against the selected mutations in additional VSV-based systems, in an independently developed cellular system, in a biochemical assay, and in a recombinant SARS-CoV-2 system. We demonstrate that some mutants are cross-resistant to ensitrelvir and GC376, whereas others are less resistant to these compounds. Furthermore, we found that most of these resistance mutations already existed in SARS-CoV-2 sequences that have been deposited in the NCBI and GISAID databases, indicating that these mutations were present in circulating SARS-CoV-2 strains.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Mutation/genetics , Protease Inhibitors/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
4.
bioRxiv ; 2022 Dec 26.
Article in English | MEDLINE | ID: mdl-35982678

ABSTRACT

Vaccines and drugs have helped reduce disease severity and blunt the spread of SARS-CoV-2. However, ongoing virus transmission, continuous evolution, and increasing selective pressures have the potential to yield viral variants capable of resisting these interventions. Here, we investigate the susceptibility of natural variants of the main protease (Mpro/3CLpro) of SARS-CoV-2 to protease inhibitors. Multiple single amino acid changes in Mpro confer resistance to nirmatrelvir (the active component of Paxlovid). An additional clinical-stage inhibitor, ensitrelvir (Xocova), shows a different resistance mutation profile. Importantly, phylogenetic analyses indicate that several of these resistant variants have pre-existed the introduction of these drugs into the human population and are capable of spreading. These results encourage the monitoring of resistance variants and the development of additional protease inhibitors and other antiviral drugs with different mechanisms of action and resistance profiles for combinatorial therapy.

5.
Commun Biol ; 5(1): 391, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35478219

ABSTRACT

Protease inhibitors are among the most powerful antiviral drugs. However, for SARS-CoV-2 only a small number of protease inhibitors have been identified thus far and there is still a great need for assays that efficiently report protease activity and inhibition in living cells. Here, we engineer a safe VSV-based system to report both gain- and loss-of-function of coronavirus main protease (Mpro/3CLpro/Nsp5) activity in living cells. We use SARS-CoV-2 3CLpro in this system to confirm susceptibility to known inhibitors (boceprevir, GC376, PF-00835231, and PF-07321332/nirmatrelvir) and reevaluate other reported inhibitors (baicalein, ebselen, carmofur, ethacridine, ivermectin, masitinib, darunavir, and atazanavir). Moreover, we show that the system can be adapted to report both the function and the chemical inhibition of proteases from different coronavirus species as well as from distantly related viruses. Together with the fact that live cell assays also reflect compound permeability and toxicity, we anticipate that this system will be useful for both identification and optimization of additional coronavirus protease inhibitors.


Subject(s)
COVID-19 , Cysteine Endopeptidases , Humans , Indoles , Lactams , Leucine , Nitriles , Peptide Hydrolases , Proline , Protease Inhibitors/pharmacology , Pyrrolidinones , SARS-CoV-2 , Viral Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...