Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Environ Res ; 257: 119373, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38852831

ABSTRACT

Mining operations generate sediment erosion rates above those of natural landscapes, causing persistent contamination of floodplains. Riparian vegetation in mine-impacted river catchments plays a key role in the storage/remobilization of metal contaminants. Mercury (Hg) pollution from mining is a global environmental challenge. This study provides an integrative assessment of Hg storage in riparian trees and soils along the Paglia River (Italy) which drains the abandoned Monte Amiata Hg mining district, the 3rd former Hg producer worldwide, to characterize their role as potential secondary Hg source to the atmosphere in case of wildfire or upon anthropic utilization as biomass. In riparian trees and nearby soils Hg ranged between 0.7 and 59.9 µg/kg and 2.2 and 52.8 mg/kg respectively. In trees Hg concentrations were below 100 µg/kg, a recommended Hg limit for the quality of solid biofuels. Commercially, Hg contents in trees have little impact on the value of the locally harvested biomass and pose no risk to human health, although higher values (195-738 µg/kg) were occasionally found. In case of wildfire, up to 1.4*10-3 kg Hg/ha could be released from trees and 27 kg Hg/ha from soil in the area, resulting in an environmentally significant Hg pollution source. Data constrained the contribution of riparian trees to the biogeochemical cycling of Hg highlighting their role in management and restoration plans of river catchments affected by not-remediable Hg contamination. In polluted river catchments worldwide riparian trees represent potential sustainable resources for the mitigation of dispersion of Hg in the ecosystem, considering i) their Hg storage capacity, ii) their potential to be used for local energy production (e.g. wood-chips) through the cultivation and harvesting of biomasses and, iii) their role in limiting soil erosion from riparian polluted riverbanks, probably representing the best pragmatic choice to minimize the transport of toxic elements to the sea.


Subject(s)
Environmental Monitoring , Environmental Restoration and Remediation , Mercury , Mining , Rivers , Trees , Mercury/analysis , Rivers/chemistry , Environmental Restoration and Remediation/methods , Italy , Water Pollutants, Chemical/analysis , Soil Pollutants/analysis
2.
Environ Sci Pollut Res Int ; 30(59): 124232-124244, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37999838

ABSTRACT

Biomonitoring studies are often employed to track airborne pollutants both in outdoor and indoor environments. In this study, the mercury (Hg) sorption by three biomonitors, i.e., Pinus nigra bark, Pseudovernia furfuracea lichen, and Hypnum cupressiforme moss, was investigated in controlled (indoor) conditions. In comparison to outdoor environments, controlled conditions offer the opportunity to investigate more in detail the variables (humidity, temperature, pollutants speciation, etc.) that control Hg uptake. The biomonitors were exposed in two distinct periods of the year for 2 and 12 months respectively, in the halls of the Central Italian Herbarium (Natural History Museum of the University of Florence, Italy), which are polluted by Hg, due to past plant sample treatments. The Hg sorption trend was monitored every 3 weeks by recording: (i) the Hg content in the substrata, (ii) gaseous elemental mercury (GEM) concentrations in the exposition halls, (iii) temperature, (iv) humidity, and (v) particulate matter (PM) concentrations. At the end of the experiment, Hg concentrations in the biomonitors range from 1130 ± 201 to 293 ± 45 µg kg-1 (max-min) in barks, from 3470 ± 571 to 648 ± 40 µg kg-1 in lichens, and from 3052 ± 483 to 750 ± 127 µg kg-1 in mosses. All the biomonitors showed the highest Hg accumulation after the first 3 weeks of exposure. Mercury concentrations increased over time showing a continuous accumulation during the experiments. The biomonitors demonstrated different Hg accumulation trends in response to GEM concentrations and to the different climatic conditions (temperature and humidity) of the Herbarium halls. Barks strictly reflected the gaseous Hg pollution, while lichen and moss accumulation was also influenced by the climatic conditions of the indoor environment. Mercury bound to PM seemed to provide a negligible contribution to the biomonitors final uptake.


Subject(s)
Air Pollutants , Bryophyta , Environmental Pollutants , Lichens , Mercury , Mercury/analysis , Air Pollutants/analysis , Environmental Monitoring , Particulate Matter , Italy
3.
Environ Sci Process Impacts ; 24(10): 1748-1757, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-35972271

ABSTRACT

Tree bark near former mercury (Hg) mines and roasting plants is known to have exceptionally high (up to several mg kg-1) Hg concentrations. This study explores the change of Hg speciation with depth (down to 25-30 mm from the outermost surface) in black pine (Pinus nigra) bark by means of high-resolution X-ray absorption near edge structure (HR-XANES) spectroscopy at the Hg LIII-edge. Principal component analysis and linear combination fitting applied to the HR-XANES spectra suggested that in the outermost layer (∼0-2 mm from the surface), roughly 50% of Hg is in the form of nanoparticulate metacinnabar (nano-ß-HgS). A progressive increase in Hg-organic species (Hg bound to thiol groups) is found in deeper bark layers, while nano-ß-HgS may decrease below the detection limit in the deepest layers. Notably, bark layers did not contain cinnabar (α-HgS), which was found in the nearby soils along with ß-HgS (bulk), nor Hg0, which is the main Hg species in the atmosphere surrounding the sampled trees. These observations suggested that nano-ß-HgS, at least in part, does not originate from mechanically trapped wind-blown particulates from the surrounding soil, but may be the product of biochemical reactions between gaseous elemental Hg and the bark tissue.


Subject(s)
Mercury , Pinus , Mercury/analysis , X-Ray Absorption Spectroscopy , Pinus/chemistry , Plant Bark/chemistry , Environmental Monitoring/methods , Mining , Soil/chemistry , Sulfhydryl Compounds
4.
Toxics ; 10(7)2022 Jul 16.
Article in English | MEDLINE | ID: mdl-35878300

ABSTRACT

The Mediterranean Sea is characterized by a marked mercury (Hg) geochemical anomaly, arising in part from large Hg deposits. Mercury mass loads discharged from the Monte Amiata mining district (Central Italy) to the Mediterranean Sea through the Paglia-Tiber River system were estimated. Data from two seasons showed that up to 40 kg year-1 of Hg are drained to Tiber River and finally to the Mediterranean Sea. The mercury mass loads varied in different seasons, from 3 mg day-1 in the upper section of Paglia River in November to 42 g day-1 before the confluence with Tiber River in June. Along Tiber River, up to 15 ng L-1 of the total Hg found at a site after Rome showed that Hg can be discharged to the sea. The Alviano reservoir along Tiber River acts as a temporary trap for Hg-rich particulate, while dam operations may promote Hg release (up to 223 g day-1). The combination of hydrologic factors controlling Hg transport, the torrential regime in the upper catchment of Paglia River, the waterway steepness, together with Hg-contaminated legacy sediments in the Paglia River floodplain, make the Paglia-Tiber River system a long-lasting intermittent source of Hg to Tiber River and the Mediterranean Sea.

5.
Toxics ; 10(4)2022 Mar 26.
Article in English | MEDLINE | ID: mdl-35448420

ABSTRACT

The terrestrial environment is an important contributor of microplastics (MPs) to the oceans. Urban streams, strictly interwoven in the city network and to the MPs' terrestrial source, have a relevant impact on the MP budget of large rivers and, in turn, marine areas. We investigated the fluxes (items/day) of MPs and natural fibers of Mugnone Creek, a small stream crossing the highly urbanized landscape of Florence (Italy) and ending in the Arno River (and eventually to the Tyrrhenian Sea). Measurements were done in dry and wet seasons for two years (2019-2020); stream sediments were also collected in 2019. The highest loads of anthropogenic particles were observed in the 2019 wet season (109 items/day) at the creek outlet. The number of items in sediments increased from upstream (500 items/kg) to urban sites (1540 items/kg). Fibers were the dominant shape class; they were mostly cellulosic in composition. Among synthetic items, fragments of butadiene-styrene (SBR), indicative of tire wear, were observed. Domestic wastewater discharge and vehicular traffic are important sources of pollution for Mugnone Creek, especially during rain events. The study of small creeks is of pivotal importance to limit the availability of MPs in the environment.

6.
Toxics ; 9(6)2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34203704

ABSTRACT

Museums air quality can be negatively affected by treatments with heavy metals compounds employed to prevent pest infestations. Among these, the past use of mercury dichloride (HgCl2) on herbaria artifacts currently produces high levels of indoor atmospheric gaseous mercury (Hg0) and possibly of particulate bound Hg (PBM), i.e., the particulate matter containing Hg. This study evaluates the PBM pollution in the Central Italian Herbarium (Natural History Museum of the University of Florence, Italy), characterizing the size range and chemical speciation with SEM-EDS microanalysis. The analysis of the total Hg concentration in the samples allowed to calculate the workers exposure risk to this pollutant. PBM is almost totally classifiable as fine particulate with a significant dimensional increase in a period of scarce attendance of the Herbarium rooms. The microanalysis indicates that Hg is essentially bound to S, highlighting the change of Hg speciation from the original association with Cl. The average Hg concentration reveals a potential health risk for workers as result of multiple Hg exposure pathways, mainly by ingestion. The study provides information for characterizing PBM pollution that could affect a workplace atmosphere and a useful basis to evaluate and correctly design solution strategies to reduce the contamination levels and protect workers' health.

7.
Article in English | MEDLINE | ID: mdl-32244315

ABSTRACT

In the present study, mercury (Hg) concentrations were investigated in lichens (Flavoparmelia caperata (L.) Hale, Parmelia saxatilis (L.) Ach., and Xanthoria parietina (L.) Th.Fr.) collected in the surrounding of the dismissed Abbadia San Salvatore Hg mine (Monte Amiata district, Italy). Results were integrated with Hg concentrations in tree barks and literature data of gaseous Hg levels determined by passive air samplers (PASs) in the same area. The ultimate goal was to compare results obtained by the three monitoring techniques to evaluate potential mismatches. Lichens displayed 180-3600 ng/g Hg, and Hg concentrations decreased exponentially with distance from the mine. Mercury concentration was lower than in Pinus nigra barks at the same site. There was a moderate correlation between Hg in lichen and Hg in bark, suggesting similar mechanisms of Hg uptake and residence times. However, correlation with published gaseous Hg concentrations (PASs) was moderate at best (Kendall Tau = 0.4-0.5, p > 0.05). The differences occurred because a) PASs collected gaseous Hg, whereas lichens and barks also picked up particulate Hg, and b) lichens and bark had a dynamic exchange with the atmosphere. Lichen, bark, and PAS outline different and complementary aspects of airborne Hg content and efficient monitoring programs in contaminated areas would benefit from the integration of data from different techniques.


Subject(s)
Air Pollutants , Lichens , Mercury , Air Pollutants/analysis , Atmosphere , Environmental Monitoring , Italy , Mercury/analysis
8.
J Environ Sci (China) ; 87: 377-388, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31791510

ABSTRACT

Up to 1980s, the most used preservative for herbaria specimens was HgCl2, sublimating at ambient air conditions; ionic Hg then reduces to Hg0 (gaseous elemental mercury, GEM) and diffuses throughout poor ventilated environments. High GEM levels may indeed persist for decades, representing a health hazard. In this study, we present new GEM data from the Central Italian Herbarium and Tropical Herbarium Studies Centre of the University of Florence (Italy). These herbaria host one of the largest collection of plants in the world. Here, HgCl2 was documented as plant preservative up to the 1920s. GEM surveys were conducted in July 2013 and July and December 2017, to account for temporal and seasonal variations. Herbaria show GEM concentrations well above those of external locations, with peak levels within specimen storage cabinets, exceeding 50,000 ng/m3. GEM concentrations up to ~7800 ng/m3 were observed where the most ancient collections are stored and no ventilation systems were active. On the contrary, lower GEM concentrations were observed at the first floor. Here, lower and more homogeneously distributed GEM concentrations were measured in 2017 than in 2013 since the air-conditioning system was updated in early 2017. GEM concentrations were similar to other herbaria worldwide and lower than Italian permissible exposure limit of 20,000 ng/m3 (8-hr working day). Our results indicate that after a century from the latest HgCl2 treatment GEM concentrations are still high, i.e., the treatment itself is almost irreversible. Air conditioning and renewing is probably the less expensive and more effective method for GEM lowering.


Subject(s)
Air Pollutants/analysis , Air Pollution/statistics & numerical data , Environmental Monitoring , Mercury/analysis , Italy
9.
Environ Pollut ; 227: 83-88, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28458249

ABSTRACT

This study determined, by means of X-ray absorption near-edge structure (XANES) spectroscopy, the speciation of mercury (Hg) in black pine (Pinus nigra) barks from Monte Amiata, that were previously shown to contain exceptionally high (up to some mg kg-1) Hg contents because of the proximity to the former Hg mines and roasting plants. Linear fit combination (LCF) analysis of the experimental spectra compared to a large set of reference compounds showed that all spectra can be fitted by only four species: ß-HgS (metacinnabar), Hg-cysteine, Hg bound to tannic acid, and Hg0. The first two are more widespread, whereas the last two occur in one sample only; the contribution of organic species is higher in deeper layers of barks than in the outermost ones. We interpret these results to suggest that, during interaction of barks with airborne Hg, the metal is initially mechanically captured at the bark surface as particulate, or physically adsorbed as gaseous species, but eventually a stable chemical bond is established with organic ligands of the substrate. As a consequence, we suggest that deep bark Hg may be a good proxy for long term time-integrated exposure, while surface bark Hg is more important for recording short term events near Hg point sources.


Subject(s)
Environmental Monitoring , Mercury/analysis , Pinus/chemistry , Soil Pollutants/analysis , X-Ray Absorption Spectroscopy , Adsorption , Italy , Mining , X-Rays
10.
Sci Total Environ ; 569-570: 105-113, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27341111

ABSTRACT

Tree barks are relevant interfaces between plants and the external environment, and can effectively retain airborne particles and elements at their surface. In this paper we have studied the distribution of mercury (Hg) in soils and in black pine (Pinus nigra) barks from the Mt. Amiata Hg district in southern Tuscany (Italy), where past Hg mining and present-day geothermal power plants affect local atmospheric Hg concentration, posing serious environmental concerns. Barks collected in heavily Hg-polluted areas of the district display the highest Hg concentration ever reported in literature (8.6mg/kg). In comparison, barks of the same species collected in local reference areas and near geothermal power plants show much lower (range 19-803µg/kg) concentrations; even lower concentrations are observed at a "blank" site near the city of Florence (5-98µg/kg). Results show a general decrease of Hg concentration from bark surface inwards, in accordance with a deposition of airborne Hg, with minor contribution from systemic uptake from soils. Preliminary results indicate that bark Hg concentrations are comparable with values reported for lichens in the same areas, suggesting that tree barks may represent an additional useful tool for biomonitoring of airborne Hg.


Subject(s)
Air Pollutants/metabolism , Environmental Monitoring/methods , Mercury/metabolism , Pinus/chemistry , Plant Bark/chemistry , Italy
11.
Environ Geochem Health ; 36(1): 145-57, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23666049

ABSTRACT

Stream sediment, stream water, and fish were collected from a broad region to evaluate downstream transport and dispersion of mercury (Hg) from inactive mines in the Monte Amiata Hg District (MAMD), Tuscany, Italy. Stream sediment samples ranged in Hg concentration from 20 to 1,900 ng/g, and only 5 of the 17 collected samples exceeded the probable effect concentration for Hg of 1,060 ng/g, above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of methyl-Hg in Tiber River sediment varied from 0.12 to 0.52 ng/g, and although there is no established guideline for sediment methyl-Hg, these concentrations exceeded methyl-Hg in a regional baseline site (<0.02 ng/g). Concentrations of Hg in stream water varied from 1.2 to 320 ng/L, all of which were below the 1,000 ng/L Italian drinking water Hg guideline and the 770 ng/L U.S. Environmental Protection Agency (USEPA) guideline recommended to protect against chronic effects to aquatic wildlife. Methyl-Hg concentrations in stream water varied from <0.02 to 0.53 ng/L and were generally elevated compared to the baseline site (<0.02 ng/L). All stream water samples contained concentrations of As (<1.0-6.2 µg/L) and Sb (<0.20-0.37 µg/L) below international drinking water guidelines to protect human health (10 µg/L for As and 20 µg/L for Sb) and for protection against chronic effects to aquatic wildlife (150 µg/L for As and 5.6 µg/L for Sb). Concentrations of Hg in freshwater fish muscle ranged from 0.052-0.56 µg/g (wet weight), mean of 0.17 µg/g, but only 17 % (9 of 54) exceeded the 0.30 µg/g (wet weight) USEPA fish muscle guideline recommended to protect human health. Concentrations of Hg in freshwater fish in this region generally decreased with increasing distance from the MAMD, where fish with the highest Hg concentrations were collected more proximal to the MAMD, whereas all fish collected most distal from Hg mines contained Hg below the 0.30 µg/g fish muscle guideline. Data in this study indicate some conversion of inorganic Hg to methyl-Hg and uptake of Hg in fish on the Paglia River, but less methylation of Hg and Hg uptake by freshwater fish in the larger Tiber River.


Subject(s)
Antimony/analysis , Arsenic/analysis , Fishes , Mercury/analysis , Mercury/pharmacokinetics , Methylmercury Compounds/analysis , Water Pollutants, Chemical/analysis , Animals , Carps , Geologic Sediments/analysis , Geologic Sediments/chemistry , Italy , Mining , Muscle, Skeletal/chemistry , Rivers/chemistry
12.
Environ Sci Technol ; 47(12): 6231-8, 2013 Jun 18.
Article in English | MEDLINE | ID: mdl-23738848

ABSTRACT

Recent studies demonstrated that synthetic calcite may host considerable amounts of arsenic (As). In this paper, the concentration of As in natural calcite was determined using two novel, specifically designed, sequential extraction procedures. In addition, the oxidation state of As and its distribution between calcite and coexisting Fe-oxyhydroxides was unravelled by µXRF elemental mapping and As K-edge µXAS spectroscopy. Our results conclusively demonstrate that arsenic can be found in natural calcite up to 2 orders of magnitude over the normal crustal As abundances. Because of the large diffusion of calcite in the environment, this phase may exert an important control on As geochemistry, mobility, and bioavailability.


Subject(s)
Arsenic/chemistry , Calcium Carbonate/chemistry
13.
Sci Total Environ ; 414: 318-27, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22169390

ABSTRACT

The distribution and translocation of mercury (Hg) was studied in the Paglia River ecosystem, located downstream from the inactive Abbadia San Salvatore mine (ASSM). The ASSM is part of the Monte Amiata Hg district, Southern Tuscany, Italy, which was one of the world's largest Hg districts. Concentrations of Hg and methyl-Hg were determined in mine-waste calcine (retorted ore), sediment, water, soil, and freshwater fish collected from the ASSM and the downstream Paglia River. Concentrations of Hg in calcine samples ranged from 25 to 1500 µg/g, all of which exceeded the industrial soil contamination level for Hg of 5 µg/g used in Italy. Stream and lake sediment samples collected downstream from the ASSM ranged in Hg concentration from 0.26 to 15 µg/g, of which more than 50% exceeded the probable effect concentration for Hg of 1.06 µg/g, the concentration above which harmful effects are likely to be observed in sediment-dwelling organisms. Stream and lake sediment methyl-Hg concentrations showed a significant correlation with TOC indicating considerable methylation and potential bioavailability of Hg. Stream water contained Hg as high as 1400 ng/L, but only one water sample exceeded the 1000 ng/L drinking water Hg standard used in Italy. Concentrations of Hg were elevated in freshwater fish muscle samples and ranged from 0.16 to 1.2 µg/g (wet weight), averaged 0.84 µg/g, and 96% of these exceeded the 0.3 µg/g (methyl-Hg, wet weight) USEPA fish muscle standard recommended to protect human health. Analysis of fish muscle for methyl-Hg confirmed that >90% of the Hg in these fish is methyl-Hg. Such highly elevated Hg concentrations in fish indicated active methylation, significant bioavailability, and uptake of Hg by fish in the Paglia River ecosystem. Methyl-Hg is highly toxic and the high Hg concentrations in these fish represent a potential pathway of Hg to the human food chain.


Subject(s)
Cyprinidae/metabolism , Environmental Monitoring/statistics & numerical data , Environmental Pollutants/analysis , Geologic Sediments/chemistry , Rivers/chemistry , Soil/chemistry , Waste Products/analysis , Animals , Carbon/analysis , Italy , Mercury/analysis , Methylmercury Compounds/analysis , Mining , Muscle, Skeletal/metabolism , Spectrometry, Fluorescence , Spectrophotometry, Atomic
SELECTION OF CITATIONS
SEARCH DETAIL
...