Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 30(4): 126930, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31926786

ABSTRACT

Glycogen synthase kinase-3 plays an essential role in multiple biochemical pathways in the cell, particularly in regards to energy regulation. As such, Glycogen synthase kinase-3 is an attractive target for pharmacological intervention in a variety of disease states, particularly non-insulin dependent diabetes mellitus. However, due to homology with other crucial kinases, such as the cyclin-dependent protein kinase CDC2, developing compounds that are both potent and selective is challenging. A novel series of derivatives of 5-nitro-N2-(2-(pyridine-2ylamino)ethyl)pyridine-2,6-diamine were synthesized and have been shown to potently inhibit glycogen synthase kinase-3 (GSK3). Potency in the low nanomolar range was obtained along with remarkable selectivity. The compounds activate glycogen synthase in insulin receptor-expressing CHO-IR cells and in primary rat hepatocytes, and have acceptable pharmacokinetics and pharmacodynamics to allow for oral dosing. The X-ray co-crystal structure of human GSK3-ß in complex with compound 2 is reported and provides insights into the structural determinants of the series responsible for its potency and selectivity.


Subject(s)
Glycogen Synthase Kinase 3/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Pyridines/chemistry , Animals , Binding Sites , Crystallography, X-Ray , Drug Evaluation, Preclinical , Glycogen Synthase Kinase 3/metabolism , Half-Life , Hepatocytes/cytology , Hepatocytes/metabolism , Humans , Inhibitory Concentration 50 , Molecular Dynamics Simulation , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacokinetics , Protein Structure, Tertiary , Pyridines/metabolism , Pyridines/pharmacokinetics , Rats , Structure-Activity Relationship
2.
Bioorg Med Chem Lett ; 28(19): 3197-3201, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30170943

ABSTRACT

Utilizing the already described 3,4-bi-aryl pyridine series as a starting point, incorporation of a second ring system with a hydrogen bond donor and additional hydrophobic contacts yielded the azaindole series which exhibited potent, picomolar RSK2 inhibition and the most potent in vitro target modulation seen thus far for a RSK inhibitor. In the context of the more potent core, several changes at the phenol moiety were assessed to potentially find a tool molecule appropriate for in vivo evaluation.


Subject(s)
Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Animals , Chromatography, Liquid , Drug Design , Humans , Mass Spectrometry , Phenols/pharmacology , Protein Kinase Inhibitors/chemistry , Proton Magnetic Resonance Spectroscopy , Structure-Activity Relationship
3.
ACS Med Chem Lett ; 9(7): 746-751, 2018 Jul 12.
Article in English | MEDLINE | ID: mdl-30034612

ABSTRACT

Mutant isocitrate dehydrogenase 1 (IDH1) is an attractive therapeutic target for the treatment of various cancers such as AML, glioma, and glioblastoma. We have evaluated 3-pyrimidin-4-yl-oxazolidin-2-ones as mutant IDH1 inhibitors that bind to an allosteric, induced pocket of IDH1R132H. This Letter describes SAR exploration focused on improving both the in vitro and in vivo metabolic stability of the compounds, leading to the identification of 19 as a potent and selective mutant IDH1 inhibitor that has demonstrated brain penetration and excellent oral bioavailability in rodents. In a preclinical patient-derived IDH1 mutant xenograft tumor model study, 19 efficiently inhibited the production of the biomarker 2-HG.

4.
ACS Med Chem Lett ; 8(10): 1116-1121, 2017 Oct 12.
Article in English | MEDLINE | ID: mdl-29057061

ABSTRACT

Inhibition of mutant IDH1 is being evaluated clinically as a promising treatment option for various cancers with hotspot mutation at Arg132. Having identified an allosteric, induced pocket of IDH1R132H, we have explored 3-pyrimidin-4-yl-oxazolidin-2-ones as mutant IDH1 inhibitors for in vivo modulation of 2-HG production and potential brain penetration. We report here optimization efforts toward the identification of clinical candidate IDH305 (13), a potent and selective mutant IDH1 inhibitor that has demonstrated brain exposure in rodents. Preclinical characterization of this compound exhibited in vivo correlation of 2-HG reduction and efficacy in a patient-derived IDH1 mutant xenograft tumor model. IDH305 (13) has progressed into human clinical trials for the treatment of cancers with IDH1 mutation.

5.
ACS Med Chem Lett ; 6(9): 961-5, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26396681

ABSTRACT

Abrogation of errant signaling along the MAPK pathway through the inhibition of B-RAF kinase is a validated approach for the treatment of pathway-dependent cancers. We report the development of imidazo-benzimidazoles as potent B-RAF inhibitors. Robust in vivo efficacy coupled with correlating pharmacokinetic/pharmacodynamic (PKPD) and PD-efficacy relationships led to the identification of RAF265, 1, which has advanced into clinical trials.

6.
J Med Chem ; 58(17): 6766-83, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26270416

ABSTRACT

While the p90 ribosomal S6 kinase (RSK) family has been implicated in multiple tumor cell functions, the full understanding of this kinase family has been restricted by the lack of highly selective inhibitors. A bis-phenol pyrazole was identified from high-throughput screening as an inhibitor of the N-terminal kinase of RSK2. Structure-based drug design using crystallography, conformational analysis, and scaffold morphing resulted in highly optimized difluorophenol pyridine inhibitors of the RSK kinase family as demonstrated cellularly by the inhibition of YB1 phosphorylation. These compounds provide for the first time in vitro tools with an improved selectivity and potency profile to examine the importance of RSK signaling in cancer cells and to fully evaluate RSK as a therapeutic target.


Subject(s)
Pyrazoles/chemistry , Pyridines/chemistry , Pyrimidines/chemistry , Ribosomal Protein S6 Kinases, 90-kDa/antagonists & inhibitors , Animals , Cell Line , Crystallography, X-Ray , Humans , Male , Mice , Models, Molecular , Phosphorylation , Protein Conformation , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Pyridines/chemical synthesis , Pyridines/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Rats, Sprague-Dawley , Signal Transduction , Structure-Activity Relationship , Y-Box-Binding Protein 1/metabolism
8.
J Med Chem ; 57(21): 9124-9, 2014 Nov 13.
Article in English | MEDLINE | ID: mdl-25368984

ABSTRACT

Utilizing structure-based drug design, a novel dihydropyridopyrimidinone series which exhibited potent Hsp90 inhibition, good pharmacokinetics upon oral administration, and an excellent pharmacokinetic/pharmacodynamic relationship in vivo was developed from a commercial hit. The exploration of this series led to the selection of NVP-HSP990 as a development candidate.


Subject(s)
Antineoplastic Agents/chemical synthesis , Pyridones/chemical synthesis , Pyrimidines/chemical synthesis , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Mice , Pyridones/pharmacokinetics , Pyridones/pharmacology , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Structure-Activity Relationship
9.
ACS Med Chem Lett ; 5(9): 989-92, 2014 Sep 11.
Article in English | MEDLINE | ID: mdl-25221654

ABSTRACT

Benzimidazole reverse amides were designed and synthesized as Pan RAF kinase inhibitors. Investigation of the structure-activity relationship of the compounds revealed that they were potent in vitro and exhibited desirable in vivo properties.

11.
Bioorg Med Chem Lett ; 22(4): 1678-81, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22264479

ABSTRACT

Compounds belonging to several scaffolds-quinazolines, quinolines and quinoxalines-were designed and synthesized as Raf kinase inhibitors. Scaffolds were assessed for in vitro Braf(V600E) inhibition, and overall kinase selectivity. Pharmacokinetic parameters for one of the scaffolds were also determined.


Subject(s)
Amides/chemical synthesis , Amides/pharmacology , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , raf Kinases/antagonists & inhibitors , Amides/chemistry , Binding Sites , Cells, Cultured , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Humans , Models, Molecular , Molecular Structure
14.
J Org Chem ; 67(15): 5284-94, 2002 Jul 26.
Article in English | MEDLINE | ID: mdl-12126417

ABSTRACT

Sterically stabilized alpha-lactams react by two distinct acid-catalyzed pathways. Protonation on oxygen results in nucleophilic attack at the acyl carbon and gives C-2 products. Protonation on nitrogen leads to nucleophilic attack at the C-3 carbon and yields C-3 products. The mechanism thus developed is very useful for understanding the changes in rates and product distributions in the reactions of sterically stabilized alpha-lactams with nucleophiles. It can also be extrapolated to other alpha-lactams so that a more coherent picture of alpha-lactam reactivity can be developed.

SELECTION OF CITATIONS
SEARCH DETAIL
...