Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132
Filter
Add more filters










Publication year range
1.
Cell Death Dis ; 14(12): 821, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38092755

ABSTRACT

Glioblastoma (GBM) is the most frequent and lethal brain tumor, whose therapeutic outcome - only partially effective with current schemes - places this disease among the unmet medical needs, and effective therapeutic approaches are urgently required. In our attempts to identify repositionable drugs in glioblastoma therapy, we identified the neuroleptic drug chlorpromazine (CPZ) as a very promising compound. Here we aimed to further unveil the mode of action of this drug. We performed a supervised recognition of the signal transduction pathways potentially influenced by CPZ via Reverse-Phase Protein microArrays (RPPA) and carried out an Activity-Based Protein Profiling (ABPP) followed by Mass Spectrometry (MS) analysis to possibly identify cellular factors targeted by the drug. Indeed, the glycolytic enzyme PKM2 was identified as one of the major targets of CPZ. Furthermore, using the Seahorse platform, we analyzed the bioenergetics changes induced by the drug. Consistent with the ability of CPZ to target PKM2, we detected relevant changes in GBM energy metabolism, possibly attributable to the drug's ability to inhibit the oncogenic properties of PKM2. RPE-1 non-cancer neuroepithelial cells appeared less responsive to the drug. PKM2 silencing reduced the effects of CPZ. 3D modeling showed that CPZ interacts with PKM2 tetramer in the same region involved in binding other known activators. The effect of CPZ can be epitomized as an inhibition of the Warburg effect and thus malignancy in GBM cells, while sparing RPE-1 cells. These preclinical data enforce the rationale that allowed us to investigate the role of CPZ in GBM treatment in a recent multicenter Phase II clinical trial.


Subject(s)
Glioblastoma , Humans , Glioblastoma/pathology , Chlorpromazine/pharmacology , Chlorpromazine/therapeutic use , Pyruvate Kinase/metabolism , Cell Line, Tumor , Energy Metabolism
2.
Int J Mol Sci ; 24(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36902351

ABSTRACT

SARS-CoV-2 infection is characterized by several clinical manifestations, ranging from the absence of symptoms to severe forms that necessitate intensive care treatment. It is known that the patients with the highest rate of mortality develop increased levels of proinflammatory cytokines, called the "cytokine storm", which is similar to inflammatory processes that occur in cancer. Additionally, SARS-CoV-2 infection induces modifications in host metabolism leading to metabolic reprogramming, which is closely linked to metabolic changes in cancer. A better understanding of the correlation between perturbed metabolism and inflammatory responses is necessary. We evaluated untargeted plasma metabolomics and cytokine profiling via 1H-NMR (proton nuclear magnetic resonance) and multiplex Luminex assay, respectively, in a training set of a limited number of patients with severe SARS-CoV-2 infection classified on the basis of their outcome. Univariate analysis and Kaplan-Meier curves related to hospitalization time showed that lower levels of several metabolites and cytokines/growth factors, correlated with a good outcome in these patients and these data were confirmed in a validation set of patients with similar characteristics. However, after the multivariate analysis, only the growth factor HGF, lactate and phenylalanine retained a significant prediction of survival. Finally, the combined analysis of lactate and phenylalanine levels correctly predicted the outcome of 83.3% of patients in both the training and the validation set. We highlighted that the cytokines and metabolites involved in COVID-19 patients' poor outcomes are similar to those responsible for cancer development and progression, suggesting the possibility of targeting them by repurposing anticancer drugs as a therapeutic strategy against severe SARS-CoV-2 infection.


Subject(s)
COVID-19 , Neoplasms , Humans , SARS-CoV-2 , Cytokines , Lactates
3.
Cell Death Dis ; 14(2): 129, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36792589

ABSTRACT

Lipid and cholesterol metabolism play a crucial role in tumor cell behavior and in shaping the tumor microenvironment. In particular, enzymatic and non-enzymatic cholesterol metabolism, and derived metabolites control dendritic cell (DC) functions, ultimately impacting tumor antigen presentation within and outside the tumor mass, dampening tumor immunity and immunotherapeutic attempts. The mechanisms accounting for such events remain largely to be defined. Here we perturbed (oxy)sterol metabolism genetically and pharmacologically and analyzed the tumor lipidome landscape in relation to the tumor-infiltrating immune cells. We report that perturbing the lipidome of tumor microenvironment by the expression of sulfotransferase 2B1b crucial in cholesterol and oxysterol sulfate synthesis, favored intratumoral representation of monocyte-derived antigen-presenting cells, including monocyte-DCs. We also found that treating mice with a newly developed antagonist of the oxysterol receptors Liver X Receptors (LXRs), promoted intratumoral monocyte-DC differentiation, delayed tumor growth and synergized with anti-PD-1 immunotherapy and adoptive T cell therapy. Of note, looking at LXR/cholesterol gene signature in melanoma patients treated with anti-PD-1-based immunotherapy predicted diverse clinical outcomes. Indeed, patients whose tumors were poorly infiltrated by monocytes/macrophages expressing LXR target genes showed improved survival over the course of therapy. Thus, our data support a role for (oxy)sterol metabolism in shaping monocyte-to-DC differentiation, and in tumor antigen presentation critical for responsiveness to immunotherapy. The identification of a new LXR antagonist opens new treatment avenues for cancer patients.


Subject(s)
Melanoma , Monocytes , Mice , Animals , Monocytes/metabolism , Cell Differentiation , Cholesterol/metabolism , Antigen Presentation , Dendritic Cells/metabolism , Tumor Microenvironment
4.
J Transl Med ; 20(1): 290, 2022 06 27.
Article in English | MEDLINE | ID: mdl-35761360

ABSTRACT

BACKGROUND: Triple negative breast cancer (TNBC) is an aggressive disease characterized by high risk of relapse and development of resistance to different chemotherapy agents. Several targeted therapies have been investigated in TNBC with modest results in clinical trials. Among these, PI3K/AKT inhibitors have been evaluated in addition to standard therapies, yielding conflicting results and making attempts on elucidating inherent mechanisms of resistance of great interest. Increasing evidences suggest that PI3K/AKT inhibitors can induce autophagy in different cancers. Autophagy represents a supposed mechanism of drug-resistance in aggressive tumors, like TNBC. We, therefore, investigated if two PI3K/AKT inhibitors, ipatasertib and taselisib, could induce autophagy in breast cancer models, and whether chloroquine (CQ), a well known autophagy inhibitor, could potentiate ipatasertib and taselisib anti-cancer effect in combination with conventional chemotherapy. METHODS: The induction of autophagy after ipatasertib and taselisib treatment was evaluated in MDAMB231, MDAM468, MCF7, SKBR3 and MDAB361 breast cancer cell lines by assaying LC3-I conversion to LC3-II through immunoblotting and immunofluorescence. Other autophagy-markers as p62/SQSTM1 and ATG5 were evaluated by immunoblotting. Synergistic antiproliferative effect of double and triple combinations of ipatasertib/taselisib plus CQ and/or paclitaxel were evaluated by SRB assay and clonogenic assay. Anti-apoptotic effect of double combination of ipatasertib/taselisib plus CQ was evaluated by increased cleaved-PARP by immunoblot and by Annexin V- flow cytometric analysis. In vivo experiments were performed on xenograft model of MDAMB231 in NOD/SCID mice. RESULTS: Our results suggested that ipatasertib and taselisib induce increased autophagy signaling in different breast cancer models. This effect was particularly evident in PI3K/AKT resistant TNBC cells, where the inhibition of autophagy by CQ potentiates the therapeutic effect of PI3K/AKT inhibitors in vitro and in vivo TNBC models, synergizing with taxane-based chemotherapy. CONCLUSION: These data suggest that inhibition of authophagy with CQ could overcome mechanism of drug resistance to PI3K/AKT inhibitors plus paclitaxel in TNBC making the evaluation of such combinations in clinical trials warranted.


Subject(s)
Chloroquine , Drug Resistance, Neoplasm , Phosphoinositide-3 Kinase Inhibitors , Triple Negative Breast Neoplasms , Animals , Autophagy , Cell Line, Tumor , Cell Proliferation , Chloroquine/pharmacology , Chloroquine/therapeutic use , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Triple Negative Breast Neoplasms/drug therapy
5.
Cancers (Basel) ; 14(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35158912

ABSTRACT

BACKGROUND: Triple negative breast cancer (TNBC) is a heterogeneous group of tumors with early relapse, poor overall survival, and lack of effective treatments. Hence, new prognostic biomarkers and therapeutic targets are needed. METHODS: The expression profile of all twenty-five human selenoproteins was analyzed in TNBC by a systematic approach.In silicoanalysis was performed on publicly available mRNA expression datasets (Cancer Cell Line Encyclopedia, CCLE and Library of Integrated Network-based Cellular Signatures, LINCS). Reverse transcription quantitative PCR analysis evaluated selenoprotein mRNA expression in TNBC versus non-TNBC and normal breast cells, and in TNBC tissues versus normal counterparts. Immunohistochemistry was employed to study selenoproteins in TNBC tissues. STRING and Cytoscape tools were used for functional and network analysis. RESULTS: GPX1, GPX4, SELENOS, TXNRD1 and TXNRD3 were specifically overexpressed in TNBC cells, tissues and CCLE/LINCS datasets. Network analysis demonstrated that SELENOS-binding valosin-containing protein (VCP/p97) played a critical hub role in the TNBCselenoproteins sub-network, being directly associated with SELENOS expression. The combined overexpression of SELENOS and VCP/p97 correlated with advanced stages and poor prognosis in TNBC tissues and the TCGA dataset. CONCLUSION: Combined evaluation of SELENOS and VCP/p97 might represent a novel potential prognostic signature and a therapeutic target to be exploited in TNBC.

6.
Front Oncol ; 12: 1110104, 2022.
Article in English | MEDLINE | ID: mdl-36713567

ABSTRACT

Purpose: In metastatic colorectal cancer (mCRC) patients (pts), treatment strategies integrating liver resection with induction chemotherapy offer better 5-year survival rates than chemotherapy alone. However, liver resection is a complex and costly procedure, and recurrence occurs in almost 2/3rds of pts, suggesting the need to identify those at higher risk. The aim of this work was to evaluate whether the integration of plasma metabolomics and lipidomics combined with the multiplex analysis of a large panel of plasma cytokines can be used to predict the risk of relapse and other patient outcomes after liver surgery, beyond or in combination with clinical morphovolumetric criteria. Experimental design: Peripheral blood metabolomics and lipidomics were performed by 600 MHz NMR spectroscopy on plasma from 30 unresectable mCRC pts treated with bevacizumab plus oxaliplatin-based regimens within the Obelics trial (NCT01718873) and subdivided into responder (R) and non-R (NR) according to 1-year disease-free survival (DFS): ≥ 1-year (R, n = 12) and < 1-year (NR, n = 18). A large panel of cytokines, chemokines, and growth factors was evaluated on the same plasma using Luminex xMAP-based multiplex bead-based immunoassay technology. A multiple biomarkers model was built using a support vector machine (SVM) classifier. Results: Sparse partial least squares discriminant analysis (sPLS-DA) and loading plots obtained by analyzing metabolomics profiles of samples collected at the time of response evaluation when resectability was established showed significantly different levels of metabolites between the two groups. Two metabolites, 3-hydroxybutyrate and histidine, significantly predicted DFS and overall survival. Lipidomics analysis confirmed clear differences between the R and NR pts, indicating a statistically significant increase in lipids (cholesterol, triglycerides and phospholipids) in NR pts, reflecting a nonspecific inflammatory response. Indeed, a significant increase in proinflammatory cytokines was demonstrated in NR pts plasma. Finally, a multiple biomarkers model based on the combination of presurgery plasma levels of 3-hydroxybutyrate, cholesterol, phospholipids, triglycerides and IL-6 was able to correctly classify patients by their DFS with good accuracy. Conclusion: Overall, this exploratory study suggests the potential of these combined biomarker approaches to predict outcomes in mCRC patients who are candidates for liver metastasis resection after induction treatment for defining personalized management and treatment strategies.

7.
Int J Mol Sci ; 22(18)2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34576340

ABSTRACT

Valosin-containing protein (VCP)/p97, a member of the AAA+ ATPase family, is a molecular chaperone recruited to the endoplasmic reticulum (ER) membrane by binding to membrane adapters (nuclear protein localization protein 4 (NPL4), p47 and ubiquitin regulatory X (UBX) domain-containing protein 1 (UBXD1)), where it is involved in ER-associated protein degradation (ERAD). However, VCP/p97 interacts with many cofactors to participate in different cellular processes that are critical for cancer cell survival and aggressiveness. Indeed, VCP/p97 is reported to be overexpressed in many cancer types and is considered a potential cancer biomarker and therapeutic target. This review summarizes the role of VCP/p97 in different cancers and the advances in the discovery of small-molecule inhibitors with therapeutic potential, focusing on the challenges associated with cancer-related VCP mutations in the mechanisms of resistance to inhibitors.


Subject(s)
Cell Cycle Proteins/metabolism , Valosin Containing Protein/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Animals , Cell Cycle Proteins/genetics , Humans , Prognosis , Protein Binding , Valosin Containing Protein/genetics
8.
J Biomed Sci ; 28(1): 26, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33840390

ABSTRACT

Breast cancer is the most diagnosed malignancy in women. Increasing evidence has highlighted the importance of chronic inflammation at the local and/or systemic level in breast cancer pathobiology, influencing its progression, metastatic potential and therapeutic outcome by altering the tumor immune microenvironment. These processes are mediated by a variety of cytokines, chemokines and growth factors that exert their biological functions either locally or distantly. Inflammasomes are protein signaling complexes that form in response to damage- and pathogen-associated molecular patterns (DAMPS and PAMPS), triggering the release of pro-inflammatory cytokines. The dysregulation of inflammasome activation can lead to the development of inflammatory diseases, neurodegeneration, and cancer. A crucial signaling pathway leading to acute and chronic inflammation occurs through the activation of NLRP3 inflammasome followed by caspase 1-dependent release of IL-1ß and IL-18 pro-inflammatory cytokines, as well as, by gasdermin D-mediated pyroptotic cell death. In this review we focus on the role of NLRP3 inflammasome and its components in breast cancer signaling, highlighting that a more detailed understanding of the clinical relevance of these pathways could significantly contribute to the development of novel therapeutic strategies for breast cancer.


Subject(s)
Breast Neoplasms/metabolism , Cytokines/metabolism , Inflammasomes/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Pyroptosis/physiology , Animals , Breast Neoplasms/physiopathology , Female , Humans , Inflammasomes/metabolism , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
9.
J Clin Med ; 10(1)2021 Jan 03.
Article in English | MEDLINE | ID: mdl-33401546

ABSTRACT

Several studies have highlighted the key role of chronic inflammation in breast cancer development, progression, metastasis, and therapeutic outcome. These processes are mediated through a variety of cytokines and hormones that exert their biological actions either locally or distantly via systemic circulation. Recent findings suggest that positive psychosocial experiences, including psychotherapeutic interventions and therapeutic mind-body protocols, can modulate the inflammatory response by reducing the expression of genes/proteins associated with inflammation and stress-related pathways. Our preliminary results indicate that a specific mind-body therapy (MBT-T) could induce a significant reduction of the release of different cytokines and chemokines, such as SCGFß, SDF-1α, MCP3, GROα, LIF, and IL-18, in the sera of breast cancer patients compared to a control group, suggesting that MBT-T could represent a promising approach to improve the wellness and outcome of breast cancer patients.

10.
Int J Mol Sci ; 21(22)2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33212936

ABSTRACT

Biomarkers are a critical medical need for oncologists to predict and detect disease and to determine the best course of action for cancer patient care [...].


Subject(s)
Biomarkers, Tumor/metabolism , Neoplasms/diagnosis , Neoplasms/metabolism , Humans , Prognosis
11.
J Exp Clin Cancer Res ; 39(1): 213, 2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33032653

ABSTRACT

BACKGROUND: Despite the introduction of several novel therapeutic approaches that improved survival, metastatic castration-resistant prostate cancer (mCRPC) remains an incurable disease. Herein we report the synergistic antitumor interaction between two well-known drugs used for years in clinical practice, the antiepileptic agent with histone deacetylase inhibitory activity valproic acid and the cholesterol lowering agent simvastatin, in mCRPC models. METHODS: Synergistic anti-tumor effect was assessed on PC3, 22Rv1, DU145, DU145R80, LNCaP prostate cancer cell lines and EPN normal prostate epithelial cells, by calculating combination index (CI), caspase 3/7 activation and colony formation assays as well as on tumor spheroids and microtissues scored with luminescence 3D-cell viability assay. Cancer stem cells (CSC) compartment was studied evaluating specific markers by RT-PCR, western blotting and flow cytometry as well as by limiting dilution assay. Cholesterol content was evaluated by 1H-NMR. Overexpression of wild-type YAP and constitutively active YAP5SA were obtained by lipofectamine-based transfection and evaluated by immunofluorescence, western blotting and RT-PCR. 22Rv1 R_39 docetaxel resistant cells were selected by stepwise exposure to increasing drug concentrations. In vivo experiments were performed on xenograft models of DU145R80, 22Rv1 parental and docetaxel resistant cells, in athymic mice. RESULTS: We demonstrated the capacity of the combined approach to target CSC compartment by a novel molecular mechanism based on the inhibition of YAP oncogene via concurrent modulation of mevalonate pathway and AMPK. Because both CSCs and YAP activation have been associated with chemo-resistance, we tested if the combined approach can potentiate docetaxel, a standard of care in mCRCP treatment. Indeed, we demonstrated, both in vitro and in vivo models, the ability of valproic acid/simvastatin combination to sensitize mCRPC cells to docetaxel and to revert docetaxel-resistance, by mevalonate pathway/YAP axis modulation. CONCLUSION: Overall, mCRPC progression and therapeutic resistance driven by CSCs via YAP, can be tackled by the combined repurposing of two generic and safe drugs, an approach that warrants further clinical development in this disease.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Biomarkers, Tumor/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Drug Synergism , Gene Expression Regulation, Neoplastic/drug effects , Neoplastic Stem Cells/drug effects , Prostatic Neoplasms/drug therapy , Transcription Factors/antagonists & inhibitors , Animals , Apoptosis , Biomarkers, Tumor/genetics , Cell Movement , Cell Proliferation , Docetaxel/administration & dosage , Drug Resistance, Neoplasm , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Simvastatin/administration & dosage , Tumor Cells, Cultured , Valproic Acid/administration & dosage , Xenograft Model Antitumor Assays
12.
Int J Mol Sci ; 21(18)2020 Sep 13.
Article in English | MEDLINE | ID: mdl-32933107

ABSTRACT

Selenoproteins are proteins that contain selenium within selenocysteine residues. To date, twenty-five mammalian selenoproteins have been identified; however, the functions of nearly half of these selenoproteins are unknown. Although alterations in selenoprotein expression and function have been suggested to play a role in cancer development and progression, few detailed studies have been carried out in this field. Network analyses and data mining of publicly available datasets on gene expression levels in different cancers, and the correlations with patient outcome, represent important tools to study the correlation between selenoproteins and other proteins present in the human interactome, and to determine whether altered selenoprotein expression is cancer type-specific, and/or correlated with cancer patient prognosis. Therefore, in the present study, we used bioinformatics approaches to (i) build up the network of interactions between twenty-five selenoproteins and identify the most inter-correlated proteins/genes, which are named HUB nodes; and (ii) analyze the correlation between selenoprotein gene expression and patient outcome in ten solid tumors. Then, considering the need to confirm by experimental approaches the correlations suggested by the bioinformatics analyses, we decided to evaluate the gene expression levels of the twenty-five selenoproteins and six HUB nodes in androgen receptor-positive (22RV1 and LNCaP) and androgen receptor-negative (DU145 and PC3) cell lines, compared to human nontransformed, and differentiated, prostate epithelial cells (EPN) by RT-qPCR analysis. This analysis confirmed that the combined evaluation of some selenoproteins and HUB nodes could have prognostic value and may improve patient outcome predictions.


Subject(s)
Prostatic Neoplasms/genetics , Selenoproteins/genetics , Animals , Cell Line , Cell Line, Tumor , Epithelial Cells/pathology , Gene Expression/genetics , Humans , Male , Mice , Mice, Nude , PC-3 Cells , Prognosis , Prostate/pathology , Prostatic Neoplasms/pathology , Receptors, Androgen/genetics
13.
Cells ; 9(4)2020 04 24.
Article in English | MEDLINE | ID: mdl-32344648

ABSTRACT

Chondrosarcomas (CHS) are malignant cartilaginous neoplasms with diverse morphological features, characterized by resistance to chemo- and radiation therapies. In this study, we investigated the role of tumor-associated macrophages (TAM)s in tumor tissues from CHS patients by immunohistochemistry. Three-dimensional organotypic co-cultures were set up in order to evaluate the contribution of primary human CHS cells in driving an M2-like phenotype in monocyte-derived primary macrophages, and the capability of macrophages to promote growth and/or invasiveness of CHS cells. Finally, with an in vivo model of primary CHS cells engrafted in nude mice, we tested the ability of a potent peptide inhibitor of cell migration (Ac-d-Tyr-d-Arg-Aib-d-Arg-NH2, denoted RI-3) to reduce recruitment and infiltration of monocytes into CHS neoplastic lesions. We found a significant correlation between alternatively activated M2 macrophages and intratumor microvessel density in both conventional and dedifferentiated CHS human tissues, suggesting a link between TAM abundance and vascularization in CHS. In 3D and non-contact cu-culture models, soluble factors produced by CHS induced a M2-like phenotype in macrophages that, in turn, increased motility, invasion and matrix spreading of CHS cells. Finally, we present evidence that RI-3 successfully prevent both recruitment and infiltration of monocytes into CHS tissues, in nude mice.


Subject(s)
Chondrosarcoma/pathology , Monocytes/pathology , Tumor-Associated Macrophages/pathology , Adult , Aged , Animals , Antigens, CD/metabolism , Collagen/pharmacology , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Immunophenotyping , Male , Mice, Nude , Microvessels/pathology , Middle Aged , Monocytes/drug effects , Phenotype , Spheroids, Cellular/drug effects , Spheroids, Cellular/pathology , THP-1 Cells , Time Factors , Tumor-Associated Macrophages/drug effects
14.
Sci Rep ; 9(1): 16131, 2019 11 06.
Article in English | MEDLINE | ID: mdl-31695102

ABSTRACT

Selenophosphate synthetase 2 (SEPHS2) synthesizes selenide and ATP into selenophosphate, the selenium donor for selenocysteine (Sec), which is cotranslationally incorporated into selenoproteins. The action and regulatory mechanisms of SEPHS2 as well as its role in carcinogenesis (especially breast cancer) remain ambiguous and need further clarification. Therefore, lacking an experimentally determined structure for SEPHS2, we first analyzed the physicochemical properties of its sequence, modeled its three-dimensional structure and studied its conformational behavior to identify the key residues (named HUB nodes) responsible for protein stability and to clarify the molecular mechanisms by which it induced its function. Bioinformatics analysis evidenced higher amplification frequencies of SEPHS2 in breast cancer than in other cancer types. Therefore, because triple negative breast cancer (TNBC) is biologically the most aggressive breast cancer subtype and its treatment represents a challenge due to the absence of well-defined molecular targets, we evaluated SEPHS2 expression in two TNBC cell lines and patient samples. We demonstrated mRNA and protein overexpression to be correlated with aggressiveness and malignant tumor grade, suggesting that this protein could potentially be considered a prognostic marker and/or therapeutic target for TNBC.


Subject(s)
Phosphotransferases/chemistry , Phosphotransferases/genetics , Selenocysteine/metabolism , Triple Negative Breast Neoplasms/genetics , Amino Acid Sequence , Female , Gene Amplification , Humans , Phosphotransferases/metabolism , Protein Stability , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology
15.
Sci Rep ; 9(1): 12169, 2019 08 21.
Article in English | MEDLINE | ID: mdl-31434916

ABSTRACT

The interaction between the short 88Ser-Arg-Ser-Arg-Tyr92 sequence of the urokinase receptor (uPAR) and the formyl peptide receptor type 1 (FPR1) elicits cell migration. We generated the Ac-(D)-Tyr-(D)-Arg-Aib-(D)-Arg-NH2 (RI-3) peptide which inhibits the uPAR/FPR1 interaction, reducing migration of FPR1 expressing cells toward N-formyl-methionyl-leucyl-phenylalanine (fMLF) and Ser-Arg-Ser-Arg-Tyr (SRSRY) peptides. To understand the structural basis of the RI-3 inhibitory effects, the FPR1/fMLF, FPR1/SRSRY and FPR1/RI-3 complexes were modeled and analyzed, focusing on the binding pocket of FPR1 and the interaction between the amino acids that signal to the FPR1 C-terminal loop. We found that RI-3 shares the same binding site of fMLF and SRSRY on FPR1. However, while fMLF and SRSRY display the same agonist activation signature (i.e. the series of contacts that transmit the conformational transition throughout the complex), translating binding into signaling, RI-3 does not interact with the activation region of FPR1 and hence does not activate signaling. Indeed, fluorescein-conjugated RI-3 prevents either fMLF and SRSRY uptake on FPR1 without triggering FPR1 internalization and cell motility in the absence of any stimulus. Collectively, our data show that RI-3 is a true FPR1 antagonist and suggest a pharmacophore model useful for development of compounds that selectively inhibit the uPAR-triggered, FPR1-mediated cell migration.


Subject(s)
Peptides/metabolism , Receptors, Formyl Peptide/metabolism , Receptors, Urokinase Plasminogen Activator/chemistry , Amino Acid Sequence , Animals , Binding Sites , Cell Line, Tumor , Cell Movement/drug effects , HEK293 Cells , Humans , Molecular Dynamics Simulation , Peptides/chemistry , Peptides/pharmacology , Protein Binding , Protein Interaction Maps , Protein Structure, Tertiary , Rats , Receptors, Formyl Peptide/chemistry , Receptors, Formyl Peptide/genetics , Structure-Activity Relationship
16.
Sci Rep ; 9(1): 517, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30679744

ABSTRACT

Diatom-derived polyunsaturated aldehydes (PUAs), decadienal, heptadienal and octadienal, derive from the oxidation of fatty acids and have cytotoxic and anticancer effects. PUAs, tested separately, induce malformations in sea urchin Paracentrotus lividus embryos. Decadienal induces the worst malformations and lowest survival rates. Interestingly, decadienal, heptadienal and octadienal place in motion several genes to counteract their negative effects. To date, no studies are available reporting on the effects of PUA mixtures on marine invertebrates. Here we test binary and ternary mixtures on embryonic development of P. lividus. Our findings demonstrate that mixtures of PUAs act (i) at morphological level in synergistic way, being much more severe compared to individual PUAs; (ii) at molecular level also reveal an additive effect, affecting almost all fifty genes, previously tested using individual PUAs. This study is relevant from an ecological point of view since diatoms are a major food source for both pelagic and benthic organisms. This work opens new perspectives for understanding the molecular mechanisms that marine organisms use in reacting to environmental natural toxin mixtures such as diatom PUAs.


Subject(s)
Aldehydes/toxicity , Diatoms/chemistry , Paracentrotus/drug effects , Paracentrotus/embryology , Aldehydes/chemistry , Animals , Biological Products/chemistry , Biological Products/toxicity , Embryo, Nonmammalian/drug effects , Embryonic Development/drug effects , Gene Expression Regulation, Developmental/drug effects
17.
J Transl Med ; 17(1): 8, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30602382

ABSTRACT

BACKGROUND: Intramuscular triglycerides (IMTGs) represent an important energy supply and a dynamic fat-storage depot that can expand during periods of elevated lipid availability and a fatty acid source. Ultrasonography (US) of human skeletal muscles is a practical and reproducible method to assess both IMTG presence and entity. Although a crosstalk between cytokines in skeletal muscle and adipose tissue has been suggested in obesity, condition leading to hepatic steatosis (HS) or better defined as nonalcoholic fatty liver disease and cancer, there are still questions to be answered about the role of interferons (IFNs), alpha as well as gamma, and IMTG in obesity. We aimed at discovering any correlation between IFNs and IMTG. METHODS: We analysed anthropometric data, metabolic parameters and imaging features of a population of 80 obese subjects with low-prevalence of co-morbidities but HS in relation to IFNs serum levels. A population of 38 healthy subjects (21 males) served as controls. The levels of serum IFNs were detected by a magnetic bead-based multiplex immunoassays. RESULTS: Serum concentrations of IFN-alpha 2 were increased, while serum levels of IFN-gamma were decreased confronted with those of controls; the severity of IMTG, revealed at US as Heckmatt scores, was inversely predicted by IFN-alpha 2 serum concentrations; IMTG scores were not predicted by serum levels of IFN-gamma; IMTG scores were predicted by HS severity, ascertained at US; HS severity was predicted by visceral adipose tissue, assessed by US, but the latter was not instrumental to IMTG. DISCUSSION AND CONCLUSION: This study has added some pieces of observation about the cytokine network regulating the interplay between IMTG and obesity in obese patients with HS.


Subject(s)
Adiposity , Interferon-alpha/blood , Interferon-gamma/blood , Muscle, Skeletal/pathology , Non-alcoholic Fatty Liver Disease/blood , Obesity/blood , Adult , Age Factors , Bayes Theorem , Factor Analysis, Statistical , Female , Humans , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/complications , Obesity/complications , Probability , Reference Values , Regression Analysis , Triglycerides/metabolism
18.
Cell Death Differ ; 26(7): 1267-1282, 2019 07.
Article in English | MEDLINE | ID: mdl-30254376

ABSTRACT

Drug resistance imposes severe limitations to the efficacy of targeted therapy in BRAF-mutated metastatic melanoma. Although this issue has been mitigated by the development of combination therapies with BRAF plus MEK inhibitors, drug resistance inevitably occurs with time and results in clinical recurrences and untreatable disease. Hence, there is strong need of developing new combination therapies and non-invasive diagnostics for the early identification of drug-resistant patients. We report here that the development of drug resistance to BRAFi is dominated by a dynamic deregulation of a large population of miRNAs, leading to the alteration of cell intrinsic proliferation and survival pathways, as well as of proinflammatory and proangiogenic cues, where a prominent role is played by the miR-199b-5p/VEGF axis. Significant alterations of miRNA expression levels are detectable in tumor biopsies and plasma from patients after disease recurrence. Targeting these alterations blunts the development of drug resistance.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Melanoma/drug therapy , Melanoma/genetics , MicroRNAs/genetics , Mutation , Protein Kinase Inhibitors/pharmacology , Vemurafenib/pharmacology , Cell Proliferation/drug effects , Down-Regulation/drug effects , Drug Screening Assays, Antitumor , Humans , Melanoma/metabolism , MicroRNAs/metabolism , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism
19.
PLoS One ; 13(10): e0204954, 2018.
Article in English | MEDLINE | ID: mdl-30273387

ABSTRACT

Cyanobacteria contribute to the ecology of various marine environments, also for their symbioses, since some of them are common hosts of sponges and ascidians. They are also emerging as an important source of novel bioactive secondary metabolites in pharmacological (as anticancer drugs) and biotechnological applications. In the present work we isolated a cyanobacteria in a free-living state from leaves of the seagrass Posidonia oceanica leaves. This newly collected strain was then cultivated under two laboratory conditions, and then characterized by combining morphological observation and molecular studies based on 16S rRNA gene sequences analysis. The strain showed 99% pairwise sequence identity with Halomicronema metazoicum ITAC101, never isolated before as a free-living organisms, but firstly described as an endosymbiont of the Mediterranean marine spongae Petrosia ficiformis, under the form of a filamentous strain. Further studies will investigate the actual role of this cyanobacterium in the leaf stratum of P. oceanica leaves, given its demonstrated ability to influence the vitality and the life cycle of other organisms. In fact, its newly demonstrated free-living stage, described in this study, indicate that Phormidium-like cyanobacteria could play important roles in the ecology of benthic and planktonic communities.


Subject(s)
Alismatales/microbiology , Cyanobacteria/isolation & purification , Base Sequence , Cyanobacteria/classification , Cyanobacteria/genetics , Plant Leaves/microbiology , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/isolation & purification , RNA, Ribosomal, 16S/metabolism , Seawater/microbiology , Sequence Alignment , Sequence Analysis, DNA , Symbiosis
20.
Toxins (Basel) ; 10(11)2018 Oct 28.
Article in English | MEDLINE | ID: mdl-30373285

ABSTRACT

Hepatoblastoma incidence has been associated with different environmental factors even if no data are reported about a correlation between aflatoxin exposure and hepatoblastoma initiation. Considering that hepatoblastoma develops in infants and children and aflatoxin M1 (AFM1), the aflatoxin B1 (AFB1) hydroxylated metabolite, can be present in mothers' milk and in marketed milk products, in this study we decided to test the effects of AFM1 on a hepatoblastoma cell line (HepG2). Firstly, we evaluated the effects of AFM1 on the cell viability, apoptosis, cell cycle, and metabolomic and cytokinomic profile of HepG2 cells after treatment. AFM1 induced: (1) a decrease of HepG2 cell viability, reaching IC50 at 9 µM; (2) the blocking of the cell cycle in the G0/G1 phase; (3) the decrease of formiate levels and incremented level of some amino acids and metabolites in HepG2 cells after treatment; and (4) the increase of the concentration of three pro-inflammatory cytokines, IL-6, IL-8, and TNF-α, and the decrease of the anti-inflammatory interleukin, IL-4. Our results show that AFM1 inhibited the growth of HepG2 cells, inducing both a modulation of the lipidic, glycolytic, and amino acid metabolism and an increase of the inflammatory status of these cells.


Subject(s)
Aflatoxin M1/toxicity , Cytokines/metabolism , Hepatoblastoma/metabolism , Liver Neoplasms/metabolism , Cell Cycle/drug effects , Cell Survival/drug effects , Hep G2 Cells , Humans , Metabolomics
SELECTION OF CITATIONS
SEARCH DETAIL
...