Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Antiviral Res ; 109: 171-4, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25017472

ABSTRACT

Development of novel strategies targeting the highly virulent ebolaviruses is urgently required. A proteomic study identified the ER chaperone HSPA5 as an ebolavirus-associated host protein. Here, we show using the HSPA5 inhibitor (-)- epigallocatechin gallate (EGCG) that the chaperone is essential for virus infection, thereby demonstrating a functional significance for the association. Furthermore, in vitro and in vivo gene targeting impaired viral replication and protected animals in a lethal infection model. These findings demonstrate that HSPA5 is vital for replication and can serve as a viable target for the design of host-based countermeasures.


Subject(s)
Ebolavirus/physiology , Heat-Shock Proteins/metabolism , Hemorrhagic Fever, Ebola/metabolism , Animals , Antiviral Agents/pharmacology , Catechin/analogs & derivatives , Catechin/pharmacology , Ebolavirus/drug effects , Endoplasmic Reticulum Chaperone BiP , Heat-Shock Proteins/genetics , Hemorrhagic Fever, Ebola/genetics , Hemorrhagic Fever, Ebola/virology , Host-Pathogen Interactions , Humans , Mice, Inbred C57BL , Virus Replication/drug effects
2.
Mol Cell Proteomics ; 9(12): 2690-703, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20702783

ABSTRACT

An assessment of the total protein composition of filovirus (ebolavirus and marburgvirus) virions is currently lacking. In this study, liquid chromatography-linked tandem mass spectrometry of purified ebola and marburg virions was performed to identify associated cellular proteins. Host proteins involved in cell adhesion, cytoskeleton, cell signaling, intracellular trafficking, membrane organization, and chaperones were identified. Significant overlap exists between this data set and proteomic studies of disparate viruses, including HIV-1 and influenza A, generated in multiple cell types. However, the great majority of proteins identified here have not been previously described to be incorporated within filovirus particles. Host proteins identified by liquid chromatography-linked tandem mass spectrometry could lack biological relevance because they represent protein contaminants in the virus preparation, or because they are incorporated within virions by chance. These issues were addressed using siRNA library-mediated gene knockdown (targeting each identified virion-associated host protein), followed by filovirus infection. Knockdown of several host proteins (e.g. HSPA5 and RPL18) significantly interfered with ebolavirus and marburgvirus infection, suggesting specific and relevant virion incorporation. Notably, select siRNAs inhibited ebolavirus, but enhanced marburgvirus infection, suggesting important differences between the two viruses. The proteomic analysis presented here contributes to a greater understanding of filovirus biology and potentially identifies host factors that can be targeted for antiviral drug development.


Subject(s)
Filoviridae/metabolism , Proteomics , RNA Interference , Viral Proteins/metabolism , Virion/metabolism , Amino Acid Sequence , Chromatography, Liquid , Electrophoresis, Polyacrylamide Gel , Gene Knockdown Techniques , Microscopy, Fluorescence , Molecular Sequence Data , Polymerase Chain Reaction , Tandem Mass Spectrometry , Viral Proteins/chemistry , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...