Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
3 Biotech ; 8(7): 292, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29963352

ABSTRACT

In this study, probiotic biomass and nisin productions by Lactococcus lactis CECT 539 were followed in two realkalized fed-batch cultures in diluted whey (DW) supplemented with KH2PO4 up to a total phosphorus concentration of 0.459 g/L. Increased biomass (5.12 g/L, 2.18 × 1010 CFU/mL) and nisin (235.23 BU/mL) concentrations were obtained in the culture fed concentrated whey and concentrated mussel processing waste (CMPW) medium supplemented with glucose up to a concentration of 400 g/L (CMPW + G medium) compared with similar fed-batch fermentations in DW medium. In the second fed-batch fermentation, the feeding medium CMPW + G was supplemented with KH2PO4 up to a TP concentration of 3.21 g/L. With this approach, increased production of biomass (5.49 g/L, 2.33 × 1010 CFU/mL) and nisin (257.59 BU/mL) was obtained. Considering the substantial availability of these wastes at very low prices from local dairy and mussel processing plants in Galicia, their use as culture media could offer an attractive alternative for a low-cost production of probiotic biomass and nisin at a high scale.

2.
Appl Microbiol Biotechnol ; 100(18): 7899-908, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27112347

ABSTRACT

Nisin production by Lactococcus lactis CECT 539 was followed in batch cultures in whey supplemented with different concentrations of glucose and in two realkalized fed-batch fermentations in unsupplemented whey, which were fed, respectively, with concentrated solutions of lactose and glucose. In the batch fermentations, supplementation of whey with glucose inhibited both the growth and bacteriocin production. However, fed-batch cultures were characterized with high productions of biomass (1.34 and 1.51 g l(-1)) and nisin (50.6 and 60.3 BU ml(-1)) in comparison to the batch fermentations in unsupplemented whey (0.48 g l(-1) and 22.5 BU ml(-1)) and MRS broth (1.59 g l(-1) and 50.0 BU ml(-1)). In the two realkalized fed-batch fermentations, the increase in bacteriocin production parallels both the biomass production and pH drop generated in each realkalization and feeding cycle, suggesting that nisin was synthesized as a pH-dependent primary metabolite. A shift from homolactic to heterolactic fermentation was observed at the 108 h of incubation, and other metabolites (acetic acid and butane-2,3-diol) in addition to lactic acid accumulated in the medium. On the other hand, the feeding with glucose improved the efficiencies in glucose, nitrogen, and phosphorus consumption as compared to the batch cultures. The realkalized fed-batch fermentations showed to be an effective strategy to enhance nisin production in whey by using an appropriate feeding strategy to avoid the substrate inhibition.


Subject(s)
Culture Media/chemistry , Glucose/metabolism , Lactococcus lactis/metabolism , Lactose/metabolism , Nisin/metabolism , Whey/metabolism , Batch Cell Culture Techniques , Fermentation , Hydrogen-Ion Concentration , Lactococcus lactis/growth & development , Nitrogen/metabolism , Phosphorus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...