Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Econ Entomol ; 116(3): 733-741, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37030004

ABSTRACT

During the past decade, the use of predatory mirids alone or combined with releases of egg parasitoids of the genus Trichogramma have been tested in Europe for biological control of the worldwide invasive pest, Tuta absoluta (Meyrick). Here, we evaluated the control of this pest by the release of the Neotropical mirid Macrolophus basicornis (Stal), the Neotropic/Nearctic parasitoid Trichogramma pretiosum Riley, and by combined releases of the predator and the parasitoid. Tests were conducted in greenhouse compartments during the summer and fall season. Each compartment contained 10 tomato plants in which only the pest was released or the pest with 1 or 2 natural enemies. Plant damage, and pest and natural enemy densities were checked weekly on one apical, medium, and bottom leaf of 5 plants. Both M. basicornis and T. pretiosum significantly reduced T. absoluta density when released alone. Combined releases resulted in a 10% higher reduction during the summer season, but not during the fall season. The damage caused by T. absoluta was significantly higher in control treatments than in all natural enemy treatments: at the end of the summer trial leaves were completely damaged in the control treatment, whereas only up to 25% leaf damage occurred in the natural enemy treatments. Combined releases did not result in lower damage than with releases of either M. basicornis or T. pretiosum. Practical aspects of single and combined releases are discussed.


Subject(s)
Heteroptera , Hymenoptera , Moths , Solanum lycopersicum , Animals , Pest Control, Biological/methods
2.
Pest Manag Sci ; 79(5): 1820-1828, 2023 May.
Article in English | MEDLINE | ID: mdl-36641545

ABSTRACT

BACKGROUND: The use of light-emitting diode (LED) lights in horticulture allows growers to adjust the light spectrum to optimize crop production and quality. However, changes in light quality can also influence plant-arthropod interactions, with possible consequences for pest management. The addition of far-red light has been shown to interfere with plant immunity, thereby increasing plant susceptibility to biotic stress and increasing pest performance. Far-red light also influences plant emission of volatile organic compounds (VOCs) and might thus influence tritrophic interactions with biological control agents. We investigated how far-red light influences the VOC-mediated attraction of the predatory mite Phytoseiulus persimilis to tomato plants infested with Tetranychus urticae, and its ability to control T. urticae populations. RESULTS: Far-red light significantly influences herbivore-induced VOC emissions of tomato plants, characterized by a change in relative abundance of terpenoids, but this did not influence the attraction of P. persimilis to herbivore-induced plants. Supplemental far-red light led to an increased population growth of T. urticae and increased numbers of P. persimilis. This resulted in a stronger suppression of T. urticae populations under supplemental far-red light, to similar T. urticae numbers as in control conditions without supplemental far-red light. CONCLUSION: We conclude that supplemental far-red light can change herbivore-induced VOC emissions but does not interfere with the attraction of the predator P. persimilis. Moreover, far-red light stimulates biological control of spider mites in glasshouse tomatoes due to increased population build-up of the biocontrol agent. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Solanum lycopersicum , Tetranychidae , Volatile Organic Compounds , Animals , Volatile Organic Compounds/pharmacology , Plants , Predatory Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...