Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 60(4): 2623-2633, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33529531

ABSTRACT

Up to now, the possible occurrence of a cationic ordering on the tetrahedral sublattices of stoichiometric double scheelite-type oxides was not settled, with somewhat contradictory X-ray diffraction and optical measurements [Blasse, G. J. Inorg. Nucl. Chem. 1968, 30, 2091]. Using two different synthesis routes, both ordered and disordered forms of fergusonite La2SiMoO8 were prepared. The crystal structure of the ordered form was determined using powder X-ray and neutron diffraction, which clearly evidence a tridimensional ordering between [SiO4] and [MoO4] tetrahedra. The crystal chemistry of ordered double sheelite-type LaIII2(SiIVO4)(MoVIO4) can be seen as an intermediate between those of simple regular scheelite or fergusonite LnIII(NbVO4) and of ordered triple scheelite BiIII3(FeIIIO4)(MoVIO4)2. The structure of the disordered La2SiMoO8 phase was analyzed using powder X-ray diffraction. A few small and larger diffraction peaks or bumps are observed in addition to the sharper peaks of a simple fergusonite cell. DIFFaX and FAULTS programs helped showing that these faint peaks originate from stacking faults between 2D ordered layers. The intermediate 2D-3D nature of SiO4/MoO4 ordering in seemingly disordered compounds might explain the previous discrepancy between optical and X-ray diffraction measurements.

2.
Nanomaterials (Basel) ; 10(1)2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31861853

ABSTRACT

Exclusive and unprecedented interest was accorded in this paper to the synthesis of BiFeO3 nanopowders by the polyol process. The synthesis protocol was explored and adjusted to control the purity and the grain size of the final product. The optimum parameters were carefully established and an average crystallite size of about 40 nm was obtained. XRD and Mössbauer measurements proved the high purity of the synthesized nanostructurated powders and confirmed the persistence of the rhombohedral R3c symmetry. The first studies on the magnetic properties show a noticeable widening of the hysteresis loop despite the remaining cycloidal magnetic structure, promoting the enhancement of the ferromagnetic order and consequently the magnetoelectric coupling compared to micrometric size powders.

4.
Inorg Chem ; 55(5): 2522-33, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26910206

ABSTRACT

An amorphous reduced form of oxide ion conductor La2Mo2O9 had been proposed as sulfur-tolerant anode material for solid oxide fuel cell, but its oxygen content was not known. In this paper, we investigate the reduction kinetics by diluted hydrogen of La2Mo2O9 to amorphous, and the oxygen range of the amorphous form. The reduction kinetics is studied as a function of the powder specific surface area and of the temperature, on powders synthesized by solid state reaction and by polyol process using two different solvents. The reduction process was carried out by TGA under 10% H2 diluted in argon, and its kinetics is analyzed and modeled. As expected, small particles and high temperature lead to higher reduction rates. Several reduction steps were identified by XRD during the process. At 700 °C La2Mo2O9 is directly reduced into the amorphous phase La2Mo2O7-y, whereas at 760 °C reduction occurs through an intermediate crystallized La7Mo7O30 (≅ La2Mo2O8.57) phase before amorphization. In both cases, further reduction of La2Mo2O6.2 amorphous phase leads to an exsolution of metallic molybdenum and a molybdenum deficiency in the amorphous phase. Reoxidation of amorphous La2Mo2O7-y was studied by TGA, DTA and XRD. At low temperature in air, the reduced compounds are reoxidized while remaining amorphous. The annealing for 60 h at 350 °C in air of reduced La2Mo2O6.66, obtained beforehand by solid state reaction, gives an amorphous phase with composition La2Mo2O8.85. The existence domain of the reduced amorphous phase in terms of oxygen content therefore ranges at least from O6.2 to O8.85, thus including the composition La2Mo2O8.50 of the amorphous surface layer at the origin of a huge increase of ionic conductivity recently reported in nanowires of La2Mo2O9.

SELECTION OF CITATIONS
SEARCH DETAIL
...