Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38915702

ABSTRACT

The ubiquitin-like modifier FAT10 targets hundreds of proteins in the mammalian immune system to the 26S proteasome for degradation. This degradation pathway requires the cofactor Nub1, yet the underlying mechanisms remain unknown. Here, we reconstituted a minimal in vitro system and revealed that Nub1 utilizes FAT10's intrinsic instability to trap its N-terminal ubiquitin-like domain in an unfolded state and deliver it to the 26S proteasome for engagement, allowing the degradation of FAT10-ylated substrates in a ubiquitin- and p97-independent manner. Through hydrogen-deuterium exchange, structural modeling, and site-directed mutagenesis, we identified the formation of a peculiar complex with FAT10 that activates Nub1 for docking to the 26S proteasome, and our cryo-EM studies visualized the highly dynamic Nub1 complex bound to the proteasomal Rpn1 subunit during FAT10 delivery and the early stages of ATP-dependent degradation. These studies thus identified a novel mode of cofactor-mediated, ubiquitin-independent substrate delivery to the 26S proteasome that relies on trapping partially unfolded states for engagement by the proteasomal ATPase motor.

2.
Radiat Res ; 200(6): 523-530, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38014573

ABSTRACT

High dose rate radiation has gained considerable interest recently as a possible avenue for increasing the therapeutic window in cancer radiation treatment. The sparing of healthy tissue at high dose rates relative to conventional dose rates, while maintaining tumor control, has been termed the FLASH effect. Although the effect has been validated in animal models using multiple radiation sources, it is not yet well understood. Here, we demonstrate a new experimental platform for quantifying oxidative damage to protein sidechains in solution as a function of radiation dose rate and oxygen availability using liquid chromatography mass spectrometry. Using this reductionist approach, we show that for both X-ray and electron sources, isolated peptides in solution are oxidatively modified to different extents as a function of both dose rate and oxygen availability. Our method provides an experimental platform for exploring the parameter space of the dose rate effect on oxidative changes to proteins in solution.


Subject(s)
Neoplasms , Animals , Oxidative Stress , Peptides , Oxygen , Radiotherapy Dosage
3.
Elife ; 122023 03 21.
Article in English | MEDLINE | ID: mdl-36942851

ABSTRACT

To address the ongoing SARS-CoV-2 pandemic and prepare for future coronavirus outbreaks, understanding the protective potential of epitopes conserved across SARS-CoV-2 variants and coronavirus lineages is essential. We describe a highly conserved, conformational S2 domain epitope present only in the prefusion core of ß-coronaviruses: SARS-CoV-2 S2 apex residues 980-1006 in the flexible hinge. Antibody RAY53 binds the native hinge in MERS-CoV and SARS-CoV-2 spikes on the surface of mammalian cells and mediates antibody-dependent cellular phagocytosis and cytotoxicity against SARS-CoV-2 spike in vitro. Hinge epitope mutations that ablate antibody binding compromise pseudovirus infectivity, but changes elsewhere that affect spike opening dynamics, including those found in Omicron BA.1, occlude the epitope and may evade pre-existing serum antibodies targeting the S2 core. This work defines a third class of S2 antibody while providing insights into the potency and limitations of S2 core epitope targeting.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Spike Glycoprotein, Coronavirus/genetics , SARS-CoV-2 , Antibodies , Epitopes , Antibodies, Viral , Antibodies, Neutralizing , Mammals
4.
Proc Natl Acad Sci U S A ; 119(41): e2208029119, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36194634

ABSTRACT

Stability constrains evolution. While much is known about constraints on destabilizing mutations, less is known about the constraints on stabilizing mutations. We recently identified a mutation in the innate immune protein S100A9 that provides insight into such constraints. When introduced into human S100A9, M63F simultaneously increases the stability of the protein and disrupts its natural ability to activate Toll-like receptor 4. Using chemical denaturation, we found that M63F stabilizes a calcium-bound conformation of hS100A9. We then used NMR to solve the structure of the mutant protein, revealing that the mutation distorts the hydrophobic binding surface of hS100A9, explaining its deleterious effect on function. Hydrogen-deuterium exchange (HDX) experiments revealed stabilization of the region around M63F in the structure, notably Phe37. In the structure of the M63F mutant, the Phe37 and Phe63 sidechains are in contact, plausibly forming an edge-face π-stack. Mutating Phe37 to Leu abolished the stabilizing effect of M63F as probed by both chemical denaturation and HDX. It also restored the biological activity of S100A9 disrupted by M63F. These findings reveal that Phe63 creates a molecular staple with Phe37 that stabilizes a nonfunctional conformation of the protein, thus disrupting function. Using a bioinformatic analysis, we found that S100A9 proteins from different organisms rarely have Phe at both positions 37 and 63, suggesting that avoiding a pathological stabilizing interaction indeed constrains S100A9 evolution. This work highlights an important evolutionary constraint on stabilizing mutations, namely, that they must avoid inappropriately stabilizing nonfunctional protein conformations.


Subject(s)
Calcium , Mutant Proteins , Toll-Like Receptor 4 , Calgranulin B , Deuterium , Evolution, Molecular , Humans , Magnetic Resonance Spectroscopy , Protein Conformation
5.
Commun Biol ; 5(1): 866, 2022 08 25.
Article in English | MEDLINE | ID: mdl-36008591

ABSTRACT

X-ray radiolytic labeling uses broadband X-rays for in situ hydroxyl radical labeling to map protein interactions and conformation. High flux density beams are essential to overcome radical scavengers. However, conventional sample delivery environments, such as capillary flow, limit the use of a fully unattenuated focused broadband beam. An alternative is to use a liquid jet, and we have previously demonstrated that use of this form of sample delivery can increase labeling by tenfold at an unfocused X-ray source. Here we report the first use of a liquid jet for automated inline quantitative fluorescence dosage characterization and sample exposure at a high flux density microfocused synchrotron beamline. Our approach enables exposure times in single-digit microseconds while retaining a high level of side-chain labeling. This development significantly boosts the method's overall effectiveness and efficiency, generates high-quality data, and opens up the arena for high throughput and ultrafast time-resolved in situ hydroxyl radical labeling.


Subject(s)
Hydroxyl Radical , Proteins , Fluorescence , Synchrotrons , X-Rays
6.
Nat Struct Mol Biol ; 29(3): 229-238, 2022 03.
Article in English | MEDLINE | ID: mdl-35236990

ABSTRACT

Current COVID-19 vaccines and many clinical diagnostics are based on the structure and function of the SARS-CoV-2 spike ectodomain. Using hydrogen-deuterium exchange monitored by mass spectrometry, we have uncovered that, in addition to the prefusion structure determined by cryo-electron microscopy, this protein adopts an alternative conformation that interconverts slowly with the canonical prefusion structure. This new conformation-an open trimer-contains easily accessible receptor-binding domains. It exposes the conserved trimer interface buried in the prefusion conformation, thus exposing potential epitopes for pan-coronavirus antibody and ligand recognition. The population of this state and kinetics of interconversion are modulated by temperature, receptor binding, antibody binding, and sequence variants observed in the natural population. Knowledge of the structure and populations of this conformation will help improve existing diagnostics, therapeutics, and vaccines.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Antibodies, Neutralizing , COVID-19 Vaccines , Cryoelectron Microscopy , Epitopes , Humans , Protein Conformation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
7.
Sci Adv ; 4(5): eaas9098, 2018 05.
Article in English | MEDLINE | ID: mdl-29854950

ABSTRACT

Precise protein folding is essential for the survival of all cells, and protein misfolding causes a number of diseases that lack effective therapies, yet the general principles governing protein folding in the cell remain poorly understood. In vivo, folding can begin cotranslationally and protein quality control at the ribosome is essential for cellular proteostasis. We directly characterize and compare the refolding and cotranslational folding trajectories of the protein HaloTag. We introduce new techniques for both measuring folding kinetics and detecting the conformations of partially folded intermediates during translation in real time. We find that, although translation does not affect the rate-limiting step of HaloTag folding, a key aggregation-prone intermediate observed during in vitro refolding experiments is no longer detectable. This rerouting of the folding pathway increases HaloTag's folding efficiency and may serve as a general chaperone-independent mechanism of quality control by the ribosome.


Subject(s)
Models, Molecular , Protein Conformation , Protein Folding , Protein Refolding , Proteins/chemistry , Kinetics
8.
Proc Natl Acad Sci U S A ; 113(33): E4794-800, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27482090

ABSTRACT

Outer membrane protein (OMP) biogenesis is critical to bacterial physiology because the cellular envelope is vital to bacterial pathogenesis and antibiotic resistance. The process of OMP biogenesis has been studied in vivo, and each of its components has been studied in isolation in vitro. This work integrates parameters and observations from both in vivo and in vitro experiments into a holistic computational model termed "Outer Membrane Protein Biogenesis Model" (OMPBioM). We use OMPBioM to assess OMP biogenesis mathematically in a global manner. Using deterministic and stochastic methods, we are able to simulate OMP biogenesis under varying genetic conditions, each of which successfully replicates experimental observations. We observe that OMPs have a prolonged lifetime in the periplasm where an unfolded OMP makes, on average, hundreds of short-lived interactions with chaperones before folding into its native state. We find that some periplasmic chaperones function primarily as quality-control factors; this function complements the folding catalysis function of other chaperones. Additionally, the effective rate for the ß-barrel assembly machinery complex necessary for physiological folding was found to be higher than has currently been observed in vitro. Overall, we find a finely tuned balance between thermodynamic and kinetic parameters maximizes OMP folding flux and minimizes aggregation and unnecessary degradation. In sum, OMPBioM provides a global view of OMP biogenesis that yields unique insights into this essential pathway.


Subject(s)
Bacterial Outer Membrane Proteins/biosynthesis , Molecular Chaperones/physiology , Periplasm/metabolism , Bacterial Outer Membrane Proteins/chemistry , Carrier Proteins/physiology , Escherichia coli Proteins/physiology , Heat-Shock Proteins/physiology , Peptidylprolyl Isomerase/physiology , Periplasmic Proteins/physiology , Protein Aggregates , Protein Folding , Serine Endopeptidases/physiology , Stochastic Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...