Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Appl Opt ; 63(6): 1481-1487, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38437359

ABSTRACT

Future far-infrared astrophysics observatories will require focal plane arrays containing thousands of ultrasensitive, superconducting detectors, each of which require efficient optical coupling to the telescope fore-optics. At longer wavelengths, many approaches have been developed, including feedhorn arrays and macroscopic arrays of lenslets. However, with wavelengths as short as 25 µm, optical coupling in the far infrared remains challenging. In this paper, we present an approach to fabricate far-infrared monolithic silicon microlens arrays using grayscale lithography and deep reactive ion etching. The fabricated microlens arrays presented here are designed for two different wavebands: 25-40 µm and 135-240 µm. The microlens arrays have sags as deep as 150 µm, are hexagonally packed with a pixel pitch of 900 µm, and have an overall size as large as 80 by 15 mm. We compare an as-fabricated lens profile to the design profile and calculate that the fabricated lenses would achieve 84% encircled power for the designed detector, which is only 3% less than the designed performance. We also present methods developed for antireflection coating microlens arrays and for a silicon-to-silicon die bonding process to hybridize microlens arrays with detector arrays.

2.
Sensors (Basel) ; 21(13)2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34206167

ABSTRACT

Smoking cessation apps provide efficient, low-cost and accessible support to smokers who are trying to quit smoking. This article focuses on how up-to-date machine learning algorithms, combined with the improvement of mobile phone technology, can enhance our understanding of smoking behaviour and support the development of advanced smoking cessation apps. In particular, we focus on the pros and cons of existing approaches that have been used in the design of smoking cessation apps to date, highlighting the need to improve the performance of these apps by minimizing reliance on self-reporting of environmental conditions (e.g., location), craving status and/or smoking events as a method of data collection. Lastly, we propose that making use of more advanced machine learning methods while enabling the processing of information about the user's circumstances in real time is likely to result in dramatic improvement in our understanding of smoking behaviour, while also increasing the effectiveness and ease-of-use of smoking cessation apps, by enabling the provision of timely, targeted and personalised intervention.


Subject(s)
Mobile Applications , Smoking Cessation , Humans , Machine Learning , Smokers , Smoking
3.
Sensors (Basel) ; 20(4)2020 Feb 17.
Article in English | MEDLINE | ID: mdl-32079359

ABSTRACT

Nicotine consumption is considered a major health problem, where many of those who wish to quit smoking relapse. The problem is that overtime smoking as behaviour is changing into a habit, in which it is connected to internal (e.g., nicotine level, craving) and external (action, time, location) triggers. Smoking cessation apps have proved their efficiency to support smoking who wish to quit smoking. However, still, these applications suffer from several drawbacks, where they are highly relying on the user to initiate the intervention by submitting the factor the causes the urge to smoke. This research describes the creation of a combined Control Theory and deep learning model that can learn the smoker's daily routine and predict smoking events. The model's structure combines a Control Theory model of smoking with a 1D-CNN classifier to adapt to individual differences between smokers and predict smoking events based on motion and geolocation values collected using a mobile device. Data were collected from 5 participants in the UK, and analysed and tested on 3 different machine learning model (SVM, Decision tree, and 1D-CNN), 1D-CNN has proved it's efficiency over the three methods with average overall accuracy 86.6%. The average MSE of forecasting the nicotine level was (0.04) in the weekdays, and (0.03) in the weekends. The model has proved its ability to predict the smoking event accurately when the participant is well engaged with the app.


Subject(s)
Machine Learning , Mobile Applications , Smoking Cessation/methods , Smoking/therapy , Humans , Male , Smokers/psychology , Smoking/epidemiology
4.
Cytometry A ; 87(2): 119-28, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25614363

ABSTRACT

Embryo selection in in vitro fertilization (IVF) treatment has traditionally been done manually using microscopy at intermittent time points during embryo development. Novel technique has made it possible to monitor embryos using time lapse for long periods of time and together with the reduced cost of data storage, this has opened the door to long-term time-lapse monitoring, and large amounts of image material is now routinely gathered. However, the analysis is still to a large extent performed manually, and images are mostly used as qualitative reference. To make full use of the increased amount of microscopic image material, (semi)automated computer-aided tools are needed. An additional benefit of automation is the establishment of standardization tools for embryo selection and transfer, making decisions more transparent and less subjective. Another is the possibility to gather and analyze data in a high-throughput manner, gathering data from multiple clinics and increasing our knowledge of early human embryo development. In this study, the extraction of data to automatically select and track spatio-temporal events and features from sets of embryo images has been achieved using localized variance based on the distribution of image grey scale levels. A retrospective cohort study was performed using time-lapse imaging data derived from 39 human embryos from seven couples, covering the time from fertilization up to 6.3 days. The profile of localized variance has been used to characterize syngamy, mitotic division and stages of cleavage, compaction, and blastocoel formation. Prior to analysis, focal plane and embryo location were automatically detected, limiting precomputational user interaction to a calibration step and usable for automatic detection of region of interest (ROI) regardless of the method of analysis. The results were validated against the opinion of clinical experts. © 2015 International Society for Advancement of Cytometry.


Subject(s)
Blastocyst/cytology , Embryo Culture Techniques/methods , Embryonic Development , Fertilization in Vitro/methods , Fetoscopy/methods , Cohort Studies , Diagnosis, Computer-Assisted , Fetoscopes , Humans , Image Processing, Computer-Assisted , Retrospective Studies , Time-Lapse Imaging
5.
IEEE Trans Biomed Eng ; 60(7): 1935-45, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23392339

ABSTRACT

We address the problem of tracking in vivo muscle fascicle shape and length changes using ultrasound video sequences. Quantifying fascicle behavior is required to improve understanding of the functional significance of a muscle's geometric properties. Ultrasound imaging provides a noninvasive means of capturing information on fascicle behavior during dynamic movements; to date however, computational approaches to assess such images are limited. Our approach to the problem is novel because we permit fascicles to take up nonlinear shape configurations. We achieve this using a Bayesian tracking framework that is: 1) robust, conditioning shape estimates on the entire history of image observations; and 2) flexible, enforcing only a very weak Gaussian Process shape prior that requires fascicles to be locally smooth. The method allows us to track and quantify fascicle behavior in vivo during a range of movements, providing insight into dynamic changes in muscle geometric properties which may be linked to patterns of activation and intramuscular forces and pressures.


Subject(s)
Algorithms , Image Interpretation, Computer-Assisted/methods , Muscle Contraction/physiology , Muscle Fibers, Skeletal/diagnostic imaging , Muscle Fibers, Skeletal/physiology , Humans , Image Enhancement/methods , Male , Muscle Fibers, Skeletal/ultrastructure , Reproducibility of Results , Sensitivity and Specificity , Ultrasonography , Young Adult
6.
J Appl Physiol (1985) ; 112(2): 313-27, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22033532

ABSTRACT

To understand the functional significance of skeletal muscle anatomy, a method of quantifying local shape changes in different tissue structures during dynamic tasks is required. Taking advantage of the good spatial and temporal resolution of B-mode ultrasound imaging, we describe a method of automatically segmenting images into fascicle and aponeurosis regions and tracking movement of features, independently, in localized portions of each tissue. Ultrasound images (25 Hz) of the medial gastrocnemius muscle were collected from eight participants during ankle joint rotation (2° and 20°), isometric contractions (1, 5, and 50 Nm), and deep knee bends. A Kanade-Lucas-Tomasi feature tracker was used to identify and track any distinctive and persistent features within the image sequences. A velocity field representation of local movement was then found and subdivided between fascicle and aponeurosis regions using segmentations from a multiresolution active shape model (ASM). Movement in each region was quantified by interpolating the effect of the fields on a set of probes. ASM segmentation results were compared with hand-labeled data, while aponeurosis and fascicle movement were compared with results from a previously documented cross-correlation approach. ASM provided good image segmentations (<1 mm average error), with fully automatic initialization possible in sequences from seven participants. Feature tracking provided similar length change results to the cross-correlation approach for small movements, while outperforming it in larger movements. The proposed method provides the potential to distinguish between active and passive changes in muscle shape and model strain distributions during different movements/conditions and quantify nonhomogeneous strain along aponeuroses.


Subject(s)
Image Processing, Computer-Assisted/methods , Motor Activity/physiology , Muscle, Skeletal/physiology , Ultrasonography/methods , Ankle Joint/physiology , Exercise/physiology , Exercise Test , Humans , Muscle Contraction/physiology , Muscle, Skeletal/diagnostic imaging , Range of Motion, Articular
SELECTION OF CITATIONS
SEARCH DETAIL
...