Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
PLoS One ; 7(2): e31825, 2012.
Article in English | MEDLINE | ID: mdl-22393372

ABSTRACT

Genomic imprinting is an important epigenetic phenomenon, which on the phenotypic level can be detected by the difference between the two heterozygote classes of a gene. Imprinted genes are important in both the development of the placenta and the embryo, and we hypothesized that imprinted genes might be involved in female fertility traits. We therefore performed an association study for imprinted genes related to female fertility traits in two commercial pig populations. For this purpose, 309 SNPs in fifteen evolutionary conserved imprinted regions were genotyped on 689 and 1050 pigs from the two pig populations. A single SNP association study was used to detect additive, dominant and imprinting effects related to four reproduction traits; total number of piglets born, the number of piglets born alive, the total weight of the piglets born and the total weight of the piglets born alive. Several SNPs showed significant (q-value < 0.10) additive and dominant effects and one SNP showed a significant imprinting effect. The SNP with a significant imprinting effect is closely linked to DIO3, a gene involved in thyroid metabolism. The imprinting effect of this SNP explained approximately 1.6% of the phenotypic variance, which corresponded to approximately 15.5% of the additive genetic variance. In the other population, the imprinting effect of this QTL was not significant (q-value > 0.10), but had a similar effect as in the first population. The results of this study indicate a possible association between the imprinted gene DIO3 and female fertility traits in pigs.


Subject(s)
Genomic Imprinting , Litter Size/genetics , Sus scrofa/genetics , Animals , Female , Fertility , Genetic Markers , Genetic Variation , Genotype , Haplotypes , Heterozygote , Humans , Models, Statistical , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Regression Analysis , Reproducibility of Results
2.
Genet Sel Evol ; 44: 3, 2012 Jan 24.
Article in English | MEDLINE | ID: mdl-22273519

ABSTRACT

BACKGROUND: Genomic selection has become an important tool in the genetic improvement of animals and plants. The objective of this study was to investigate the impacts of breeding value estimation method, reference population structure, and trait genetic architecture, on long-term response to genomic selection without updating marker effects. METHODS: Three methods were used to estimate genomic breeding values: a BLUP method with relationships estimated from genome-wide markers (GBLUP), a Bayesian method, and a partial least squares regression method (PLSR). A shallow (individuals from one generation) or deep reference population (individuals from five generations) was used with each method. The effects of the different selection approaches were compared under four different genetic architectures for the trait under selection. Selection was based on one of the three genomic breeding values, on pedigree BLUP breeding values, or performed at random. Selection continued for ten generations. RESULTS: Differences in long-term selection response were small. For a genetic architecture with a very small number of three to four quantitative trait loci (QTL), the Bayesian method achieved a response that was 0.05 to 0.1 genetic standard deviation higher than other methods in generation 10. For genetic architectures with approximately 30 to 300 QTL, PLSR (shallow reference) or GBLUP (deep reference) had an average advantage of 0.2 genetic standard deviation over the Bayesian method in generation 10. GBLUP resulted in 0.6% and 0.9% less inbreeding than PLSR and BM and on average a one third smaller reduction of genetic variance. Responses in early generations were greater with the shallow reference population while long-term response was not affected by reference population structure. CONCLUSIONS: The ranking of estimation methods was different with than without selection. Under selection, applying GBLUP led to lower inbreeding and a smaller reduction of genetic variance while a similar response to selection was achieved. The reference population structure had a limited effect on long-term accuracy and response. Use of a shallow reference population, most closely related to the selection candidates, gave early benefits while in later generations, when marker effects were not updated, the estimation of marker effects based on a deeper reference population did not pay off.


Subject(s)
Breeding , Models, Genetic , Selection, Genetic , Animals , Bayes Theorem , Computer Simulation , Female , Genetic Variation , Genotype , Inbreeding/statistics & numerical data , Male , Pedigree , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Reproducibility of Results
3.
BMC Proc ; 5 Suppl 3: S7, 2011 May 27.
Article in English | MEDLINE | ID: mdl-21624177

ABSTRACT

BACKGROUND: Partial least square regression (PLSR) was used to analyze the data of the QTLMAS 2010 workshop to identify genomic regions affecting either one of the two traits and to estimate breeding values. PLSR was appropriate for these data because it enabled to simultaneously fit several traits to the markers. RESULTS: A preliminary analysis showed phenotypic and genetic correlations between the two traits. Consequently, the data were analyzed jointly in a PLSR model for each chromosome independently. Regression coefficients for the markers were used to calculate the variance of each marker and inference of quantitative trait loci (QTL) was based on local maxima of a smoothed line traced through these variances. In this way, 25 QTL for the continuous trait and 22 for the discrete trait were found. There was evidence for pleiotropic QTL on chromosome 1. The 2000 most important markers were fitted in a second PLSR model to calculate breeding values of the individuals. The accuracies of these estimated breeding values ranged between 0.56 and 0.92. CONCLUSIONS: Results showed the viability of PLSR for QTL analysis and estimating breeding values using markers.

4.
BMC Proc ; 4 Suppl 1: S1, 2010 Mar 31.
Article in English | MEDLINE | ID: mdl-20380752

ABSTRACT

BACKGROUND: Genomic selection, the use of markers across the whole genome, receives increasing amounts of attention and is having more and more impact on breeding programs. Development of statistical and computational methods to estimate breeding values based on markers is a very active area of research. A simulated dataset was analyzed by participants of the QTLMAS XIII workshop, allowing a comparison of the ability of different methods to estimate genomic breeding values. METHODS: A best case scenario was analyzed by the organizers where QTL genotypes were known. Participants submitted estimated breeding values for 1000 unphenotyped individuals together with a description of the applied method(s). The submitted breeding values were evaluated for correlation with the simulated values (accuracy), rank correlation of the best 10% of individuals and error in predictions. Bias was tested by regression of simulated on estimated breeding values. RESULTS: The accuracy obtained from the best case scenario was 0.94. Six research groups submitted 19 sets of estimated breeding values. Methods that assumed the same variance for markers showed accuracies, measured as correlations between estimated and simulated values, ranging from 0.75 to 0.89 and rank correlations between 0.58 and 0.70. Methods that allowed different marker variances showed accuracies ranging from 0.86 to 0.94 and rank correlations between 0.69 and 0.82. Methods assuming equal marker variances were generally more biased and showed larger prediction errors. CONCLUSIONS: The best performing methods achieved very high accuracies, close to accuracies achieved in a best case scenario where QTL genotypes were known without error. Methods that allowed different marker variances generally outperformed methods that assumed equal marker variances. Genomic selection methods performed well compared to traditional, pedigree only, methods; all methods showed higher accuracies than those obtained for breeding values estimated solely on pedigree relationships.

5.
BMC Proc ; 4 Suppl 1: S2, 2010 Mar 31.
Article in English | MEDLINE | ID: mdl-20380756

ABSTRACT

BACKGROUND: Five participants of the QTL-MAS 2009 workshop applied QTL analyses to the workshop common data set which contained a time-related trait: cumulative yield. Underlying the trait were 18 QTLs for three parameters of a logistic growth curve that was used for simulating the trait. METHODS: Different statistical models and methods were employed to detect QTLs and estimate position and effect sizes of QTLs. Here we compare the results with respect to the numbers of QTLs detected, estimated positions and percentage explained variance. Furthermore, limiting factors in the QTL detection are evaluated. RESULTS: All QTLs for the asymptote and the scaling factor of the logistic curve were detected by at least one of the participants. Only one out of six of the QTLs for the inflection point was detected. None of the QTLs were detected by all participants. Dominant, epistatic and imprinted QTLs were reported while only additive QTLs were simulated. The power to map QTLs for the inflection point increased when more time points were added. CONCLUSIONS: For the detection of QTLs related to the asymptote and the scaling factor, there were no strong differences between the methods used here. Also, it did not matter much whether the time course data were analyzed per single time point or whether parameters of a growth curve were first estimated and then analyzed.In contrast, the power for detection of QTLs for the inflection point was very low and the frequency of time points appeared to be a limiting factor. This can be explained by a low accuracy in estimating the inflection point from a limited time range and a limited number of time points, and by the low correlation between the simulated values for this parameter and the phenotypic data available for the individual time points.

6.
BMC Proc ; 4 Suppl 1: S3, 2010 Mar 31.
Article in English | MEDLINE | ID: mdl-20380757

ABSTRACT

BACKGROUND: The simulation of the data for the QTLMAS 2009 Workshop is described. Objective was to simulate observations from a growth curve which was influenced by a number of QTL. RESULTS: The data consisted of markers, phenotypes and pedigree. Genotypes of 453 markers, distributed over 5 chromosomes of 1 Morgan each, were simulated for 2,025 individuals. From those, 25 individuals were parents of the other 2,000 individuals. The 25 parents were genetically related. Phenotypes were simulated according to a logistic growth curve and were made available for 1,000 of the 2,000 offspring individuals. The logistic growth curve was specified by three parameters. Each parameter was influenced by six Quantitative Trait Loci (QTL), positioned at the five chromosomes. For each parameter, one QTL had a large effect and five QTL had small effects. Variance of large QTL was five times the variance of small QTL. Simulated data was made available at http://www.qtlmas2009.wur.nl/UK/Dataset/.

7.
Genet Sel Evol ; 42: 9, 2010 Mar 22.
Article in English | MEDLINE | ID: mdl-20302681

ABSTRACT

The objective of this simulation study was to compare the effect of the number of QTL and distribution of QTL variance on the accuracy of breeding values estimated with genomewide markers (MEBV). Three distinct methods were used to calculate MEBV: a Bayesian Method (BM), Least Angle Regression (LARS) and Partial Least Square Regression (PLSR). The accuracy of MEBV calculated with BM and LARS decreased when the number of simulated QTL increased. The accuracy decreased more when QTL had different variance values than when all QTL had an equal variance. The accuracy of MEBV calculated with PLSR was affected neither by the number of QTL nor by the distribution of QTL variance. Additional simulations and analyses showed that these conclusions were not affected by the number of individuals in the training population, by the number of markers and by the heritability of the trait. Results of this study show that the effect of the number of QTL and distribution of QTL variance on the accuracy of MEBV depends on the method that is used to calculate MEBV.


Subject(s)
Breeding , Models, Genetic , Quantitative Trait Loci , Animals , Bayes Theorem , Computer Simulation , Genetic Markers , Regression Analysis , Selection, Genetic
8.
BMC Genet ; 10: 86, 2009 Dec 20.
Article in English | MEDLINE | ID: mdl-20021697

ABSTRACT

BACKGROUND: The chicken (Gallus gallus), like most avian species, has a very distinct karyotype consisting of many micro- and a few macrochromosomes. While it is known that recombination frequencies are much higher for micro- as compared to macrochromosomes, there is limited information on differences in linkage disequilibrium (LD) and haplotype diversity between these two classes of chromosomes. In this study, LD and haplotype diversity were systematically characterized in 371 birds from eight chicken populations (commercial lines, fancy breeds, and red jungle fowl) across macro- and microchromosomes. To this end we sampled four regions of approximately 1 cM each on macrochromosomes (GGA1 and GGA2), and four 1.5 -2 cM regions on microchromosomes (GGA26 and GGA27) at a high density of 1 SNP every 2 kb (total of 889 SNPs). RESULTS: At a similar physical distance, LD, haplotype homozygosity, haploblock structure, and haplotype sharing were all lower for the micro- as compared to the macrochromosomes. These differences were consistent across populations. Heterozygosity, genetic differentiation, and derived allele frequencies were also higher for the microchromosomes. Differences in LD, haplotype variation, and haplotype sharing between populations were largely in line with known demographic history of the commercial chicken. Despite very low levels of LD, as measured by r2 for most populations, some haploblock structure was observed, particularly in the macrochromosomes, but the haploblock sizes were typically less than 10 kb. CONCLUSION: Differences in LD between micro- and macrochromosomes were almost completely explained by differences in recombination rate. Differences in haplotype diversity and haplotype sharing between micro- and macrochromosomes were explained by differences in recombination rate and genotype variation. Haploblock structure was consistent with demography of the chicken populations, and differences in recombination rates between micro- and macrochromosomes. The limited haploblock structure and LD suggests that future whole-genome marker assays will need 100+K SNPs to exploit haplotype information. Interpretation and transferability of genetic parameters will need to take into account the size of chromosomes in chicken, and, since most birds have microchromosomes, in other avian species as well.


Subject(s)
Chickens/genetics , Chromosome Mapping , Haplotypes , Linkage Disequilibrium , Animals , Female , Gene Frequency , Genetics, Population , Male , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
9.
Genet Sel Evol ; 41: 40, 2009 Aug 11.
Article in English | MEDLINE | ID: mdl-19671130

ABSTRACT

BACKGROUND: Current methods for haplotype inference without pedigree information assume random mating populations. In animal and plant breeding, however, mating is often not random. A particular form of nonrandom mating occurs when parental individuals of opposite sex originate from distinct populations. In animal breeding this is called crossbreeding and hybridization in plant breeding. In these situations, association between marker and putative gene alleles might differ between the founding populations and origin of alleles should be accounted for in studies which estimate breeding values with marker data. The sequence of alleles from one parent constitutes one haplotype of an individual. Haplotypes thus reveal allele origin in data of crossbred individuals. RESULTS: We introduce a new method for haplotype inference without pedigree that allows nonrandom mating and that can use genotype data of the parental populations and of a crossbred population. The aim of the method is to estimate line origin of alleles. The method has a Bayesian set up with a Dirichlet Process as prior for the haplotypes in the two parental populations. The basic idea is that only a subset of the complete set of possible haplotypes is present in the population. CONCLUSION: Line origin of approximately 95% of the alleles at heterozygous sites was assessed correctly in both simulated and real data. Comparing accuracy of haplotype frequencies inferred with the new algorithm to the accuracy of haplotype frequencies inferred with PHASE, an existing algorithm for haplotype inference, showed that the DP algorithm outperformed PHASE in situations of crossbreeding and that PHASE performed better in situations of random mating.


Subject(s)
Animals, Domestic/genetics , Hybridization, Genetic , Algorithms , Alleles , Animals , Female , Genotype , Haplotypes , Male , Models, Genetic , Pedigree
10.
BMC Dev Biol ; 7: 66, 2007 Jun 13.
Article in English | MEDLINE | ID: mdl-17567520

ABSTRACT

BACKGROUND: Combining microarray results and biological pathway information will add insight into biological processes. Pathway information is widely available in databases through the internet. Mammalian muscle formation has been previously studied using microarray technology in pigs because these animals are an interesting animal model for muscle formation due to selection for increased muscle mass. Results indicated regulation of the expression of genes involved in proliferation and differentiation of myoblasts, and energy metabolism. The aim of the present study was to analyse microarrays studying myogenesis in pigs. It was necessary to develop methods to search biochemical pathways databases. RESULTS: PERL scripts were developed that used the names of the genes on the microarray to search databases. Synonyms of gene names were added to the list by searching the Gene Ontology database. The KEGG database was searched for pathway information using this updated gene list. The KEGG database returned 88 pathways. Most genes were found in a single pathway, but others were found in up to seven pathways. Combining the pathways and the microarray information 21 pathways showed sufficient information content for further analysis. These pathways were related to regulation of several steps in myogenesis and energy metabolism. Pathways regulating myoblast proliferation and muscle fibre formation were described. Furthermore, two networks of pathways describing the formation of the myoblast cytoskeleton and regulation of the energy metabolism during myogenesis were presented. CONCLUSION: Combining microarray results and pathways information available through the internet provide biological insight in how the process of porcine myogenesis is regulated.


Subject(s)
Metabolic Networks and Pathways/physiology , Muscle Development/physiology , Oligonucleotide Array Sequence Analysis , Animals , Calcium/metabolism , Databases, Genetic , Female , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gestational Age , Pregnancy , Receptors, Notch/genetics , Receptors, Notch/metabolism , Signal Transduction/physiology , Swine , Wnt Proteins/genetics , Wnt Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...