Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Differ ; 7(4): 331-7, 2000 Apr.
Article in English | MEDLINE | ID: mdl-10773817

ABSTRACT

Release of apoptogenic factors into the cytosol including cytochrome c is triggering the execution phase of apoptosis through activation of cytoplasmic effector caspases. How loss of function of the electron transport chain can be reconciled with an adequate energy supply necessary for executing the apoptotic program was studied in granulosa cell (GC) sheets cultured up to 72 h without gonadotrophic support. Cytochrome c was localized ultrastructurally by oxidation of diaminobenzidine tetrahydrochloride both in living and fixed cells. In uncultured GC sheets all cells show staining over their entire mitochondrial population. In 72 h cultured sheets in the absence of FSH pre-apoptotic GC's display two subsets of mitochondria: normal sized stained mitochondria and small orthodox mitochondria without demonstrable cytochrome function. Apoptotic cells contain several mitochondria with preservation of respiratory function besides unstained orthodox mitochondria. The cytochrome c containing mitochondria typically display dilated intracristal spaces, a mitochondrial conformation related to increased ATP production. Cytochrome c release was confirmed by Western blotting. In 72 h cultures supplemented with FSH, GC's displayed staining over their entire mitochondrial population. In cultures lacking FSH, but partially protected from apoptosis through caspase inhibition, the cytochrome c release was not inhibited. Thus in the present studied model dysfunction of only a subset of mitochondria is instrumental to initiate the apoptotic program while a functional electron transport chain is maintained until the degradation phase in a subset of respiring mitochondria.


Subject(s)
Apoptosis , Cytochrome c Group/metabolism , Granulosa Cells/cytology , Granulosa Cells/physiology , Mitochondria/metabolism , Animals , Cells, Cultured , Coturnix , Cytochrome c Group/analysis , Electron Transport Complex IV/metabolism , Female , Granulosa Cells/ultrastructure , Mitochondria/ultrastructure
2.
Nat Genet ; 23(3): 333-7, 1999 Nov.
Article in English | MEDLINE | ID: mdl-10545952

ABSTRACT

Mammalian cytochrome c oxidase (COX) catalyses the transfer of reducing equivalents from cytochrome c to molecular oxygen and pumps protons across the inner mitochondrial membrane. Mitochondrial DNA (mtDNA) encodes three COX subunits (I-III) and nuclear DNA (nDNA) encodes ten. In addition, ancillary proteins are required for the correct assembly and function of COX (refs 2, 3, 4, 5, 6). Although pathogenic mutations in mtDNA-encoded COX subunits have been described, no mutations in the nDNA-encoded subunits have been uncovered in any mendelian-inherited COX deficiency disorder. In yeast, two related COX assembly genes, SCO1 and SCO2 (for synthesis of cytochrome c oxidase), enable subunits I and II to be incorporated into the holoprotein. Here we have identified mutations in the human homologue, SCO2, in three unrelated infants with a newly recognized fatal cardioencephalomyopathy and COX deficiency. Immunohistochemical studies implied that the enzymatic deficiency, which was most severe in cardiac and skeletal muscle, was due to the loss of mtDNA-encoded COX subunits. The clinical phenotype caused by mutations in human SCO2 differs from that caused by mutations in SURF1, the only other known COX assembly gene associated with a human disease, Leigh syndrome.


Subject(s)
Cardiomyopathies/genetics , Cytochrome-c Oxidase Deficiency , Myocardium/pathology , Neuromuscular Diseases/genetics , Proteins/genetics , Amino Acid Sequence , Base Sequence , Cardiomyopathies/enzymology , Cardiomyopathies/pathology , Carrier Proteins , Cloning, Molecular , Conserved Sequence/genetics , Cysteine/genetics , Cysteine/metabolism , DNA Mutational Analysis , Electron Transport Complex IV/metabolism , Fatal Outcome , Female , Humans , Infant , Infant, Newborn , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Male , Mitochondrial Proteins , Molecular Chaperones , Molecular Sequence Data , Mutation , Myocardium/enzymology , Myocardium/metabolism , Neuromuscular Diseases/enzymology , Neuromuscular Diseases/pathology , Polymorphism, Restriction Fragment Length , Proteins/chemistry , Proteins/metabolism , RNA, Messenger/analysis , RNA, Messenger/genetics , Saccharomyces cerevisiae Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...