Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 11160, 2018 07 24.
Article in English | MEDLINE | ID: mdl-30042433

ABSTRACT

The Resistive RAM (RRAM) technology is currently in a level of maturity that calls for its integration into CMOS compatible memory arrays. This CMOS integration requires a perfect understanding of the cells performance and reliability in relation to the deposition processes used for their manufacturing. In this paper, the impact of the precursor chemistries and process conditions on the performance of HfO2 based memristive cells is studied. An extensive characterization of HfO2 based 1T1R cells, a comparison of the cell-to-cell variability, and reliability study is performed. The cells' behaviors during forming, set, and reset operations are monitored in order to relate their features to conductive filament properties and process-induced variability of the switching parameters. The modeling of the high resistance state (HRS) is performed by applying the Quantum-Point Contact model to assess the link between the deposition condition and the precursor chemistry with the resulting physical cells characteristics.


Subject(s)
Computer Storage Devices , Electric Conductivity , Electric Impedance , Hafnium/analysis , Hafnium/chemistry , Oxides/analysis , Oxides/chemistry , Transistors, Electronic , Algorithms , Carbon/analysis , Carbon/chemistry , Crystallization , Hot Temperature , Micro-Electrical-Mechanical Systems , Microscopy, Electron, Transmission , Models, Theoretical , Oxygen/analysis , Photoelectron Spectroscopy , X-Ray Diffraction
2.
Sci Rep ; 6: 28155, 2016 06 17.
Article in English | MEDLINE | ID: mdl-27312225

ABSTRACT

With the continuous scaling of resistive random access memory (RRAM) devices, in-depth understanding of the physical mechanism and the material issues, particularly by directly studying integrated cells, become more and more important to further improve the device performances. In this work, HfO2-based integrated 1-transistor-1-resistor (1T1R) RRAM devices were processed in a standard 0.25 µm complementary-metal-oxide-semiconductor (CMOS) process line, using a batch atomic layer deposition (ALD) tool, which is particularly designed for mass production. We demonstrate a systematic study on TiN/Ti/HfO2/TiN/Si RRAM devices to correlate key material factors (nano-crystallites and carbon impurities) with the filament type resistive switching (RS) behaviours. The augmentation of the nano-crystallites density in the film increases the forming voltage of devices and its variation. Carbon residues in HfO2 films turn out to be an even more significant factor strongly impacting the RS behaviour. A relatively higher deposition temperature of 300 °C dramatically reduces the residual carbon concentration, thus leading to enhanced RS performances of devices, including lower power consumption, better endurance and higher reliability. Such thorough understanding on physical mechanism of RS and the correlation between material and device performances will facilitate the realization of high density and reliable embedded RRAM devices with low power consumption.


Subject(s)
Computer Storage Devices , Equipment Design , Hafnium/chemistry , Oxides/chemistry , Semiconductors , Electric Impedance , Hot Temperature , Silicones/chemistry , Titanium/chemistry
3.
ACS Nano ; 9(5): 4776-85, 2015 May 26.
Article in English | MEDLINE | ID: mdl-25853630

ABSTRACT

Integration of graphene with Si microelectronics is very appealing by offering a potentially broad range of new functionalities. New materials to be integrated with the Si platform must conform to stringent purity standards. Here, we investigate graphene layers grown on copper foils by chemical vapor deposition and transferred to silicon wafers by wet etching and electrochemical delamination methods with respect to residual submonolayer metallic contaminations. Regardless of the transfer method and associated cleaning scheme, time-of-flight secondary ion mass spectrometry and total reflection X-ray fluorescence measurements indicate that the graphene sheets are contaminated with residual metals (copper, iron) with a concentration exceeding 10(13) atoms/cm(2). These metal impurities appear to be partially mobile upon thermal treatment, as shown by depth profiling and reduction of the minority charge carrier diffusion length in the silicon substrate. As residual metallic impurities can significantly alter electronic and electrochemical properties of graphene and can severely impede the process of integration with silicon microelectronics, these results reveal that further progress in synthesis, handling, and cleaning of graphene is required to advance electronic and optoelectronic applications.

4.
ACS Appl Mater Interfaces ; 6(20): 17496-505, 2014 Oct 22.
Article in English | MEDLINE | ID: mdl-25255194

ABSTRACT

Integration of functional oxides on Si substrates could open a pathway to integrate diverse devices on Si-based technology. Oxygen vacancies (Vo(··)) can strongly affect solid state properties of oxides, including the room temperature ferromagnetism (RTFM) in diluted magnetic oxides. Here, we report a systematical study on the RTFM of oxygen vacancy engineered (by Pr(3+) doping) CeO2 epitaxial thin films on Si substrates. High quality, mixed single crystalline Ce1-xPrxO2-δ (x = 0-1) solid solution films were obtained. The Ce ions in CeO2 with a fluorite structure show a Ce(4+)-dominant valence state in all films. The local crystal structures of the films were analyzed in detail. Pr doping creates both Vo(··) and PrO8-complex defects in CeO2 and their relative concentrations vary with the Pr-doping level. The RTFM properties of the films reveal a strong dependence on the relative Vo(··) concentration. The RTFM in the films initially increases with higher Pr-doping levels due to the increase of the F(+) center (Vo(··) with one occupied electron) concentration and completely disappears when x > 0.2, where the magnetic polaron concentration is considered to decline below the percolation threshold, thus long-range FM order can no longer be established. We thus demonstrate the possibility to directly grow RTFM Pr-doped CeO2 films on Si substrates, which can be an interesting candidate for potential magneto-optic or spintronic device applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...