Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Cells ; 13(2)2024 01 17.
Article in English | MEDLINE | ID: mdl-38247867

ABSTRACT

Ongoing technical and bioinformatics improvements in mass spectrometry (MS) allow for the identifying and quantifying of the enrichment of increasingly less-abundant proteins in individual fractions. Accordingly, this study reassessed the proteome of mouse liver peroxisomes by the parallel isolation of peroxisomes from a mitochondria- and a microsome-enriched prefraction, combining density-gradient centrifugation with a semi-quantitative SWATH-MS proteomics approach to unveil novel peroxisomal or peroxisome-associated proteins. In total, 1071 proteins were identified using MS and assessed in terms of their distribution in either high-density peroxisomal or low-density gradient fractions, containing the bulk of organelle material. Combining the data from both fractionation approaches allowed for the identification of specific protein profiles characteristic of mitochondria, the ER and peroxisomes. Among the proteins significantly enriched in the peroxisomal cluster were several novel peroxisomal candidates. Five of those were validated by colocalization in peroxisomes, using confocal microscopy. The peroxisomal import of HTATIP2 and PAFAH2, which contain a peroxisome-targeting sequence 1 (PTS1), could be confirmed by overexpression in HepG2 cells. The candidates SAR1B and PDCD6, which are known ER-exit-site proteins, did not directly colocalize with peroxisomes, but resided at ER sites, which frequently surrounded peroxisomes. Hence, both proteins might concentrate at presumably co-purified peroxisome-ER membrane contacts. Intriguingly, the fifth candidate, OCIA domain-containing protein 1, was previously described as decreasing mitochondrial network formation. In this work, we confirmed its peroxisomal localization and further observed a reduction in peroxisome numbers in response to OCIAD1 overexpression. Hence, OCIAD1 appears to be a novel protein, which has an impact on both mitochondrial and peroxisomal maintenance.


Subject(s)
Peroxisomes , Proteome , Animals , Mice , Research Design , Mitochondria , Mass Spectrometry
2.
Sci Adv ; 9(35): eadg1812, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37656789

ABSTRACT

This report demonstrates a novel class of innate immune cells designated "variable immunoreceptor-expressing myeloids" (VIREMs). Using single-cell transcriptomics and genome-wide epigenetic profiling, we establish that VIREMs are myeloid cells unrelated to lymphocytes. We visualize the phenotype of B-VIREMs that are capable of genetically recombining and expressing antibody genes, the exclusive hallmark function of B lymphocytes. These cells, designated B-VIREMs, display monoclonal antibody cell surface signatures and regularly circulate in the blood of healthy individuals. Single-cell data reveal clonal expansion of circulating B-VIREMs as a dynamic response to disease stimuli. Live-cell imaging models suggest that B-VIREMs load their own Fc receptors with endogenous antibodies during vesicle transport to the cell surface. A first cloned B-VIREM-derived antibody (Vab1) specifically binds stomatin, a ubiquitous scaffold protein that is strictly expressed intracellularly, allowing Vab1-bearing macrophages to phagocytose cell debris without requiring prior opsonization. Our results suggest important antigen-specific tissue maintenance functionalities in these innate immune cells.

3.
Nat Commun ; 14(1): 1497, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36932114

ABSTRACT

Limited response rates and frequent relapses during standard of care with hypomethylating agents in myelodysplastic neoplasms (MN) require urgent improvement of this treatment indication. Here, by combining 5-azacytidine (5-AZA) with the pan-lysyl oxidase inhibitor PXS-5505, we demonstrate superior restoration of erythroid differentiation in hematopoietic stem and progenitor cells (HSPCs) of MN patients in 20/31 cases (65%) versus 9/31 cases (29%) treated with 5-AZA alone. This effect requires direct contact of HSPCs with bone marrow stroma components and is dependent on integrin signaling. We further confirm these results in vivo using a bone marrow niche-dependent MN xenograft model in female NSG mice, in which we additionally demonstrate an enforced reduction of dominant clones as well as significant attenuation of disease expansion and normalization of spleen sizes. Overall, these results lay out a strong pre-clinical rationale for efficacy of combination treatment of 5-AZA with PXS-5505 especially for anemic MN.


Subject(s)
Myelodysplastic Syndromes , Myeloproliferative Disorders , Neoplasms , Humans , Female , Mice , Animals , Azacitidine/pharmacology , Azacitidine/therapeutic use , Erythropoiesis , Protein-Lysine 6-Oxidase , Hematopoietic Stem Cells , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/pathology , Myeloproliferative Disorders/pathology , Neoplasms/pathology
4.
Int J Mol Sci ; 23(23)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36499675

ABSTRACT

Chronic social isolation (CSIS)-induced alternation in synaptic and mitochondrial function of specific brain regions is associated with major depressive disorder (MDD). Despite the wide number of available medications, treating MDD remains an important challenge. Although fluoxetine (Flx) is the most frequently prescribed antidepressant, its mode of action is still unknown. To delineate affected molecular pathways of depressive-like behavior and identify potential targets upon Flx treatment, we performed a comparative proteomic analysis of hippocampal purified synaptic terminals (synaptosomes) of rats exposed to six weeks of CSIS, an animal model of depression, and/or followed by Flx treatment (lasting three weeks of six-week CSIS) to explore synaptic protein profile changes. Results showed that Flx in controls mainly induced decreased expression of proteins involved in energy metabolism and the redox system. CSIS led to increased expression of proteins that mainly participate in Ca2+/calmodulin-dependent protein kinase II (Camk2)-related neurotransmission, vesicle transport, and ubiquitination. Flx treatment of CSIS rats predominantly increased expression of proteins involved in synaptic vesicle trafficking (exocytosis and endocytosis), and energy metabolism (glycolytic and mitochondrial respiration). Overall, these Flx-regulated changes in synaptic and mitochondrial proteins of CSIS rats might be critical targets for new therapeutic development for the treatment of MDD.


Subject(s)
Depressive Disorder, Major , Fluoxetine , Rats , Animals , Fluoxetine/pharmacology , Fluoxetine/therapeutic use , Synaptic Vesicles/metabolism , Proteomics , Depressive Disorder, Major/drug therapy , Hippocampus/metabolism , Energy Metabolism
5.
Int J Mol Sci ; 23(3)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35163072

ABSTRACT

The TIR-containing protein C (TcpC) of the uropathogenic Escherichia coli strain CFT073 modulates innate immunity by interfering with the Toll-like receptor and NALP3 inflammasome signaling cascade. During a urinary tract infection the pathogen encounters epithelial and innate immune cells and replicates by several orders of magnitude. We therefore analyzed whether these cell types and also the density of the pathogen would induce the recently defined promoter of the CFT073 tcpC gene to, in time, dampen innate immune responses. Using reporter constructs we found that the uroepithelial cell line T24/83 and the monocytic cell line THP-1 induced the tcpC promoter. Differentiation of monocytic THP-1 cells to macrophages increased their potential to switch on the promoter. Cell-associated CFT073 displayed the highest promoter activity. Since potassium represents the most abundant intracellular ion and is secreted to induce the NLRP3 inflammasome, we tested its ability to activate the tcpC promoter. Potassium induced the promoter with high efficiency. Sodium, which is enriched in the renal cortex generating an antibacterial hypersalinity, also induced the tcpC promoter. Finally, the bacterial density modulated the tcpC promoter activity. In the search for promoter-regulating proteins, we found that the DNA-binding protein H-NS dampens the promoter activity. Taken together, different cell types and salts, present in the kidney, are able to induce the tcpC promoter and might explain the mechanism of TcpC induction during a kidney infection with uropathogenic E. coli strains.


Subject(s)
Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Fimbriae Proteins/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Urinary Tract Infections/microbiology , Uropathogenic Escherichia coli/pathogenicity , Virulence Factors/genetics , Cell Differentiation/drug effects , Cell Line , Gene Expression Regulation, Bacterial , Humans , Inflammasomes/metabolism , Models, Biological , Potassium/pharmacology , Promoter Regions, Genetic/drug effects , Signal Transduction , Sodium/pharmacology , THP-1 Cells , Urinary Tract Infections/metabolism , Uropathogenic Escherichia coli/genetics , Virulence Factors/metabolism
6.
Mol Oncol ; 16(10): 2042-2056, 2022 05.
Article in English | MEDLINE | ID: mdl-34873826

ABSTRACT

The analysis of circulating tumor DNA (ctDNA) is at the threshold of implementation into standard care for colorectal cancer (CRC) patients. However, data about the clinical utility of liquid profiling (LP), its acceptance by clinicians, and its integration into clinical workflows in real-world settings remain limited. Here, LP tests requested as part of routine care since 2016 were retrospectively evaluated. Results show restrained request behavior that improved moderately over time, as well as reliable diagnostic performance comparable to translational studies, with an overall agreement of 91.7%. Extremely low ctDNA levels at < 0.1% in over 20% of cases, a high frequency of concomitant driver mutations (in up to 14% of cases), and ctDNA levels reflecting the clinical course of disease were revealed. However, certain limitations hampering successful translation of ctDNA into clinical practice were uncovered, including the lack of clinically relevant ctDNA thresholds, appropriate time points of LP requests, and integrative evaluation of ctDNA, imaging, and clinical findings. In conclusion, these results highlight the potential clinical value of LP for CRC patient management and demonstrate issues that need to be addressed for successful long-term implementation in clinical workflows.


Subject(s)
Circulating Tumor DNA , Colorectal Neoplasms , Biomarkers, Tumor/genetics , Circulating Tumor DNA/genetics , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Humans , Liquid Biopsy/methods , Mutation/genetics , Retrospective Studies
7.
Clin Lab ; 67(12)2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34910436

ABSTRACT

BACKGROUND: Despite increasing COVID-19 infection rates, low overall prevalence resulting in a poor positive predictive value (PPV) of serological tests requires strategies to increase specificity. We therefore investigated a dual diagnostic strategy and evaluated the correlation between the severity of a SARS-CoV-2 infection and the detectable immune-response. METHODS: Participants were systematically categorized into positive and control cohorts and a probability score of COVID-19 was calculated based on clinical symptoms. Six hundred eighty-two serum samples were analyzed using a highly specific high-throughput system. Combining the serological test result and probability score was performed as a dual diagnostic strategy. RESULTS: Specificity of 99.61% and sensitivity of 86.0% were the basis of our approach. A dual diagnostic strategy led to increased pre-test probability and thus to a test specificity of 100%. In a flu-like symptomatic population, we estimated a COVID-prevalence of 4.79%. Moreover, we detected significantly higher antibody values in patients with fever than without fever. CONCLUSIONS: Based on sensitivity and specificity results of our study being in line with previous findings, we demonstrated a dual assessment strategy including a symptom-based probability score and serological testing to increase the PPV. Moreover, the presence of fever seems to trigger a stronger immune-response.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Humans , Predictive Value of Tests , Sensitivity and Specificity
8.
Sci Rep ; 11(1): 17747, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34493757

ABSTRACT

Deregulation of synaptic function and neurotransmission has been linked with the development of major depression disorder (MDD). Tianeptine (Tian) has been used as antidepressant with anxiolytic properties and recently as a nootropic to improve cognitive performance, but its mechanism of action is unknown. We conducted a proteomic study on the hippocampal synaptosomal fractions of adult male Wistar rats exposed to chronic social isolation (CSIS, 6 weeks), an animal model of depression and after chronic Tian treatment in controls (nootropic effect) and CSIS-exposed rats (lasting 3 weeks of 6-week CSIS) (therapeutic effect). Increased expression of Syn1 and Camk2-related neurotransmission, vesicle transport and energy processes in Tian-treated controls were found. CSIS led to upregulation of proteins associated with actin cytoskeleton, signaling transduction and glucose metabolism. In CSIS rats, Tian up-regulated proteins involved in mitochondrial energy production, mitochondrial transport and dynamics, antioxidative defense and glutamate clearance, while attenuating the CSIS-increased glycolytic pathway and cytoskeleton organization proteins expression and decreased the expression of proteins involved in V-ATPase and vesicle endocytosis. Our overall findings revealed that synaptic vesicle dynamics, specifically exocytosis, and mitochondria-related energy processes might be key biological pathways modulated by the effective nootropic and antidepressant treatment with Tian and be a potential target for therapeutic efficacy of the stress-related mood disorders.


Subject(s)
Antidepressive Agents/pharmacology , Depressive Disorder/drug therapy , Mitochondria/drug effects , Nootropic Agents/pharmacology , Proteome/drug effects , Social Isolation , Synaptic Vesicles/drug effects , Thiazepines/pharmacology , Animals , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Antidepressive Agents/therapeutic use , Depressive Disorder/physiopathology , Disease Models, Animal , Drug Evaluation, Preclinical , Gene Expression Regulation/drug effects , Hippocampus/drug effects , Hippocampus/ultrastructure , Male , Mitochondria/physiology , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Nootropic Agents/therapeutic use , Protein Interaction Mapping , Rats , Rats, Wistar , Signal Transduction/drug effects , Thiazepines/therapeutic use
9.
Pract Lab Med ; 26: e00241, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34258353

ABSTRACT

OBJECTIVES: Exosomes are small lipid bilayer vesicles that are defined by their endocytic origin and size range of 30-140 nm. They are constantly produced by different cell types, by both healthy and abnormal cells, and can be isolated from almost all body fluids.Little information exists in isolating exosomes from plasma due to the complexity of its content and the presence of contaminating plasma proteins. DESIGN AND METHODS: We carried-out liquid chromatography-mass spectrometry (LC-MS/MS) analyses of plasma-derived vesicles from 4 healthy donors obtained by 2 coupled methodologies: Ultracentrifugation (UC) coupled with size-exclusion chromatography (SEC) to isolate and subsequently enrich exosomes.We compared the proteins detected by UC alone and UC coupled with SEC. RESULTS: In the coupled UC + SEC methodology we found 52.25% more proteins enriched in exosomes as CD9, Annexins, YWHAZ (14-3-3 family) and others, than by using UC alone. There is also a reduction of 98.8% of contaminating plasma proteins by coupling UC and SEC in comparison to using UC alone. CONCLUSIONS: We conclude that exosomes can be successfully isolated from plasma using a very simple combination of standard methods, which could largely improve the proteomics profiling of plasma exosomes.

10.
Int J Mol Sci ; 22(11)2021 May 29.
Article in English | MEDLINE | ID: mdl-34072546

ABSTRACT

Non-targeted effects (NTE) of ionizing radiation may initiate myeloid neoplasms (MN). Here, protein mediators (I) in irradiated human mesenchymal stromal cells (MSC) as the NTE source, (II) in MSC conditioned supernatant and (III) in human bone marrow CD34+ cells undergoing genotoxic NTE were investigated. Healthy sublethal irradiated MSC showed significantly increased levels of reactive oxygen species. These cells responded by increasing intracellular abundance of proteins involved in proteasomal degradation, protein translation, cytoskeleton dynamics, nucleocytoplasmic shuttling, and those with antioxidant activity. Among the increased proteins were THY1 and GNA11/14, which are signaling proteins with hitherto unknown functions in the radiation response and NTE. In the corresponding MSC conditioned medium, the three chaperones GRP78, CALR, and PDIA3 were increased. Together with GPI, these were the only four altered proteins, which were associated with the observed genotoxic NTE. Healthy CD34+ cells cultured in MSC conditioned medium suffered from more than a six-fold increase in γH2AX focal staining, indicative for DNA double-strand breaks, as well as numerical and structural chromosomal aberrations within three days. At this stage, five proteins were altered, among them IQGAP1, HMGB1, and PA2G4, which are involved in malign development. In summary, our data provide novel insights into three sequential steps of genotoxic signaling from irradiated MSC to CD34+ cells, implicating that induced NTE might initiate the development of MN.


Subject(s)
Bone Marrow Cells/metabolism , Cell Differentiation , DNA Damage , Mesenchymal Stem Cells/metabolism , Proteome , Signal Transduction , Aged , Antigens, CD34/metabolism , Biomarkers , Bone Marrow Cells/cytology , Cell Differentiation/genetics , Cell Differentiation/radiation effects , Cell Survival/genetics , Chromosomal Instability , Culture Media, Conditioned/metabolism , Endoplasmic Reticulum Chaperone BiP , Female , Histones/metabolism , Humans , Male , Mesenchymal Stem Cells/cytology , Models, Biological , Proteomics/methods , Radiation, Ionizing , Reactive Oxygen Species/metabolism , Signal Transduction/radiation effects
11.
J Clin Microbiol ; 59(9): e0055921, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34190575

ABSTRACT

External quality assessment (EQA) is a key instrument for achieving harmonization, and thus a high quality, of diagnostic procedures. As reliable test results are crucial for accurate assessment of SARS-CoV-2 infection prevalence, vaccine response, and immunity, and thus for successful management of the ongoing COVID-19 pandemic, the Reference Institute for Bioanalytics (RfB) was the first EQA provider to offer an open scheme for anti-SARS-CoV-2 antibody detection. The main objectives of this EQA were (i) to gain insights into the current diagnostic landscape and the performance of serological tests in Europe and (ii) to provide recommendations for diagnostic improvements. Within the EQA, a blinded panel of precharacterized human serum samples with variable anti-SARS-CoV-2 antibody titers was provided for detection of anti-SARS-CoV-2 IgG, IgA, and IgM antibodies. Across the three distribution rounds in 2020, 284 laboratories from 22 countries reported a total of 3,744 results for anti-SARS-CoV-2 antibody detection using more than 24 different assays for IgG. Overall, 97/3,004 results were false for anti-SARS-CoV-2 IgG, 88/248 for IgA, and 34/124 for IgM. Regarding diagnostic sensitivity and specificity, substantial differences were found between the different assays used, as well as between certified and noncertified tests. For cutoff samples, a drop in the diagnostic sensitivity to 46.3% and high interlaboratory variability were observed. In general, this EQA highlights the current variability of anti-SARS-CoV-2 antibody detection, technical limitations with respect to cutoff samples, and the lack of harmonization of testing procedures. Recommendations are provided to help laboratories and manufacturers further improve the quality of anti-SARS-CoV-2 serological diagnostics.


Subject(s)
COVID-19 , Pandemics , Antibodies, Viral , Humans , Immunoglobulin M , SARS-CoV-2 , Sensitivity and Specificity , Serologic Tests
12.
Brain Res Bull ; 166: 128-141, 2021 01.
Article in English | MEDLINE | ID: mdl-33238171

ABSTRACT

The susceptibility of an individual to chronic social isolation (CSIS) stress may cause major depression (MD) whereby some individuals are resistant to the stress. Recent studies relate MD with altered expression of synaptic proteins in specific brain regions. To explore the neurobiological underpinnings and identify candidate biomarkers of susceptibility or resilience to CSIS, a comparative proteomic approach was used to map hippocampal synaptic protein alterations of rats exposed to 6 weeks of CSIS, an animal model of depression. This model generates two stress-response phenotypes: CSIS-sensitive (depressive-like behaviour) and CSIS-resilience assessed by means of sucrose preference and forced swim tests. Our aim was to characterize the synaptoproteome changes representative of potential long-term changes in protein expression underlying susceptibility or resilience to stress. Proteomic data showed increased expression of glycolytic enzymes, the energy-related mitochondrial proteins, actin cytoskeleton, signalling transduction and synaptic transmission proteins in CSIS-sensitive rats. Protein levels of glutamate-related enzymes such as glutamate dehydrogenase and glutamine synthetase were also increased. CSIS-resilient rats showed similar proteome changes, however with a weaker increase compared to CSIS-sensitive rats. The main difference was observed in the level of protein expression of vesicle-mediated transport proteins. Nonetheless, only few proteins were uniquely up-regulated in the CSIS-resilient rats, whereby Cytochrome b-c1 complex subunit 2, mitochondrial (Uqcrc2) and Voltage-dependent anion-selective channel protein 1 (Vdac1) were uniquely down-regulated. Identified altered activated pathways and potential protein biomarkers may help us better understand the molecular mechanisms underlying synaptic neurotransmission in MD or resilience, crucial for development of new therapeutics.


Subject(s)
Hippocampus/metabolism , Resilience, Psychological/physiology , Social Isolation , Stress, Psychological/metabolism , Synapses/metabolism , Animals , Male , Proteomics , Rats , Rats, Wistar
13.
Neuroscience ; 451: 111-125, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33065230

ABSTRACT

Tianeptine (Tian) has been widely used in treating mood and anxiety disorders, and recently as a nootropic to improve cognitive performance. However, its mechanisms of action are insufficiently clear. We used a comparative proteomic approach to identify sub-proteome changes in hippocampal cytosol and non-synaptic mitochondria (NSM) following chronic Tian treatment (3 weeks, 10 mg/kg/day) of adult male Wistar rats and rats exposed to chronic social isolation stress (CSIS) (6 weeks), an animal model of depression. Behavioural assessment of depressive and anxiety-like behaviours was based on sucrose preference, forced swim test and marble burying. Selected differently expressed proteins were validated by Western blot and/or immunohistochemical analysis. Tian normalized the behavioural alternations induced by CSIS, indicating its antidepressant and anxiolytic efficacy. Proteomic data showed that Tian increased the expression of proteasome system elements and redox system enzymes, enhanced energy metabolism and increased glyceraldehyde-3-phosphate dehydrogenase expression bound to NSM in control rats. Tian-treatment of CSIS-stressed rats resulted in a minor suppression of the increase in proteasome elements and antioxidative enzymes, except for an increase in Cu-Zn superoxide dismutase, and increased the level of Lactate dehydrogenase. Our results indicate on an increased NSM functionality in controls and suppression of the CSIS-induced impairment of NSM functionality by Tian treatment as well as on the CSIS-caused discrepancy in Tian effects relative to controls.


Subject(s)
Depression , Proteomics , Animals , Depression/drug therapy , Hippocampus/metabolism , Male , Mitochondria , Rats , Rats, Wistar , Stress, Psychological/drug therapy , Thiazepines
14.
Clin Chem Lab Med ; 58(12): 2121-2130, 2020 08 27.
Article in English | MEDLINE | ID: mdl-32853163

ABSTRACT

Objectives Assessment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection prevalence and immunity is cornerstones in the fight against COVID-19 pandemic. For pandemic control, reliable assays for the detection of anti-SARS-CoV-2 antibodies are required. This pilot external quality assessment (EQA) scheme aimed to independently assess the participants' clinical performance of anti-SARS-CoV-2 testing, to identify shortcomings in clinical practice and to evaluate the suitability of the scheme format. Methods The EQA scheme consisted of eight serum samples with variable reactivity against SARS-CoV-2 intended for the analysis of anti-SARS-CoV-2 immunoglobulin (Ig)G, IgA, and IgM antibodies. Laboratories reported: (1) results for each sample and the respective method, (2) raw data from replicate testing of each sample. Results The 16 selected pilot EQA participants reported 294 interpreted results and 796 raw data results from replicate testing. The overall error rate for the anti-SARS-CoV-2 IgG, IgA, and IgM tests was 2.7, 6.9, and 16.7%, respectively. While the overall diagnostic specificity was rated as very high, sensitivity rates between 67 and 98% indicate considerable quality differences between the manufacturers, especially for IgA and IgM. Conclusions Even the results reported by the small number of participants indicate a very heterogeneous landscape of anti-SARS-CoV-2 serological testing. Differences of available tests and the individual performance of laboratories result in a success rate of 57.1% with one laboratory succeeding for all three antibody-classes. These results are an incentive for laboratories to participate in upcoming open EQA schemes that are needed to achieve a harmonization of test results and to improve serological testing.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Serologic Tests , Antibodies, Viral/immunology , Humans , Pilot Projects , Quality Control , SARS-CoV-2
15.
Clin Chim Acta ; 510: 73-78, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32652161

ABSTRACT

BACKGROUND: For epidemiologic, social and economic reasons, assessment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection prevalence and immunity are important to adapt decisions to current demands. Hence, immunoassays for detection of anti-SARS-CoV-2 antibodies are introduced rapidly without requiring FDA emergency use authorization approval. Thus, evaluation of test performance predominantly relies on laboratories. This study aimed to evaluate the test performance of recently launched commercial immunoassays in serum and plasma samples. METHODS: 51 serum samples from 26 patients with confirmed SARS-CoV-2 infection after end of quarantine and 25 control patients were analyzed using anti-SARS-CoV-2 IgG immunoassays from Roche, Euroimmun and Epitope to assess diagnostic sensitivity and specificity. 20 matching pairs of serum and plasma samples were included to analyze comparability between different specimens. RESULTS: Overall, a diagnostic sensitivity of 92.3%, 96.2-100% and 100% with a respective diagnostic specificity of 100%, 100% and 84-86% for the immunoassays from Roche, Euroimmun and Epitope were determined. In total, 84-96% of samples were correctly classified as negative and 92.3-95.2% as positive. The level of concordance between plasma- and serum-based testing diverged between the assays (Epitope r2 = 0.97; Euroimmun r2 = 0.91; Roche r2 = 0.76). CONCLUSIONS: The immunoassays from Euroimmun and Roche revealed a higher specificity than the Epitope assay without a substantial drop of diagnostic sensitivity. Significant differences between plasma- and serum-based testing highlights the need for determination of appropriate cut-offs per specimen type. Hence, there is an urgent need for test harmonization and establishment of quality standards for an appropriate use of COVID-19 serological tests.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Immunoassay/methods , Adult , Aged , Device Approval , Female , Humans , Immunoassay/instrumentation , Male , Middle Aged , SARS-CoV-2 , United States , United States Food and Drug Administration , Young Adult
16.
Life Sci ; 254: 117790, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32416165

ABSTRACT

AIMS: To examine the differences in the hippocampal proteome profiles of resilience or susceptibility to chronic social isolation (CSIS), animal model of depression, and to identify biomarkers that can distinguish the two. MAIN METHODS: Comparative subproteomic approach was used to identify changes in hippocampal cytosol and nonsynaptic mitochondria (NSM) of CSIS-resilient compared to CSIS-sensitive or control rats. The resilient and sensitive phenotypes of CSIS rats were distinguished based on their sucrose preference values. Selected proteins were validated by Western blot or immunofluorescence. KEY FINDINGS: Predominantly down-regulated processes such as cytosolic cytoskeleton organization, the calcium signaling pathway, ubiquitin proteasome degradation, redox system, malate/aspartate shuttling and glutamate metabolism in CSIS-resilient compared to CSIS-sensitive rats were found. Decreased protein expression of glycolytic enzymes with simultaneous increased expression of Aco2 involved in tricarboxylic acid cycle and expression of several subunits composing oxidative phosphorylation involved enzymes (Uqcrc2, Atp5f1a, Atp5f1b) were found, indicating shift in energy production from glycolysis to oxidative phosphorylation in NSM. The four-fold higher level of mitochondrial glyceraldehyde-3-phosphate dehydrogenase of resilient rats indicated its transfer from the cytosol to the NSM. An increased level of transketolase along with the reduced pyruvate kinase level suggested an activated pentose phosphate pathway in CSIS-resilient relative to control rats. Cytosolic up-regulated CSIS proteins were implicated in antioxidative and proteasomal systems, while down-regulated NSM protein was involved in oxidative phosphorylation. SIGNIFICANCE: The identified altered activated pathways and potential biomarkers enhance understanding of molecular mechanisms underlying resilience or susceptibility to CSIS, crucial in developing new therapeutic strategies.


Subject(s)
Glycolysis , Hippocampus/metabolism , Mitochondria/metabolism , Oxidative Phosphorylation , Proteomics , Resilience, Psychological , Stress, Psychological/metabolism , Animals , Biomarkers/metabolism , Male , Phenotype , Rats , Social Isolation
17.
Front Neurol ; 10: 307, 2019.
Article in English | MEDLINE | ID: mdl-31001192

ABSTRACT

Bacterial meningitis is a life-threatening disease that evokes an intense neutrophil-dominated host response to microbes invading the subarachnoid space. Recent evidence indicates the existence of combinatorial V(D)J immune receptors in neutrophils that are based on the T cell receptor (TCR). Here, we investigated expression of the novel neutrophil TCRαß-based V(D)J receptors in cerebrospinal fluid (CSF) from human patients with acute-phase bacterial meningitis using immunocytochemical, genetic immunoprofiling, cell biological, and mass spectrometric techniques. We find that the human neutrophil combinatorial V(D)J receptors are rapidly induced in CSF neutrophils during the first hours of bacterial meningitis. Immune receptor repertoire diversity is consistently increased in CSF neutrophils relative to circulating neutrophils and phagocytosis of baits directed to the variable immunoreceptor is enhanced in CSF neutrophils during acute-phase meningitis. Our results reveal that a flexible immune response involving neutrophil V(D)J receptors which enhance phagocytosis is immediately initiated at the site of acute bacterial infection.

18.
Clin Chem Lab Med ; 57(5): 668-678, 2019 04 24.
Article in English | MEDLINE | ID: mdl-30511923

ABSTRACT

Background Inappropriate preanalytical sample handling is a major threat for any biomarker discovery approach. Blood specimens have a genuine proteolytic activity that leads to a time dependent decay of peptidic quality control markers (QCMs). The aim of this study was to identify QCMs for direct assessment of sample quality (DASQ) of serum and plasma specimens. Methods Serum and plasma specimens of healthy volunteers and tumor patients were spiked with two synthetic reporter peptides (exogenous QCMs) and aged under controlled conditions for up to 24 h. The proteolytic fragments of endogenous and exogenous QCMs were monitored for each time point by mass spectrometry (MS). The decay pattern of peptides was used for supervised classification of samples according to their respective preanalytical quality. Results The classification accuracy for fresh specimens (1 h) was 96% and 99% for serum and plasma specimens, respectively, when endo- and exogenous QCMs were used for the calculations. However, classification of older specimens was more difficult and overall classification accuracy decreased to 79%. Conclusions MALDI-TOF MS is a simple and robust method that can be used for DASQ of serum and plasma specimens in a high throughput manner. We propose DASQ as a fast and simple step that can be included in multicentric large-scale projects to ensure the homogeneity of sample quality.


Subject(s)
Peptides/blood , Quality Control , Adult , Aged , Biomarkers/blood , Biomarkers/metabolism , Female , Humans , Male , Middle Aged , Peptides/metabolism , Proteolysis , Reproducibility of Results , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
19.
Neuropharmacology ; 135: 268-283, 2018 06.
Article in English | MEDLINE | ID: mdl-29596899

ABSTRACT

Due to the severity of depressive symptoms, there remains a necessity in defining the underlying mechanisms of depression and the precise actions of antidepressants in alleviating these symptoms. Proteomics is a powerful and promising tool for discovering novel pathways of cellular responses to disease and treatment. As chronic social isolation (CSIS) is a valuable animal model for studying depression, we performed a comparative subproteomic study of rat hippocampus to explore the effect of six weeks of CSIS and the therapeutic effect of chronic fluoxetine (Flx) treatment (last three weeks of CSIS; 15 mg/kg/day). Behaviorally, Flx treatment normalized the decreased sucrose preference and increased marble burying results resulting from CSIS, indicative of a FLX-induced attenuation of both anhedonia and anxiety. An analysis of cytosolic and nonsynaptic mitochondrial subproteome patterns revealed that CSIS resulted in down-regulation of proteins involved in mitochondrial transport and energy processes, primarily tricarboxylic acid (TCA) cycle and oxidative phosphorylation. Chronic Flx treatment resulted in an up-regulation of CSIS-altered proteins and additional expression of other transporter and energy-involved proteins. Immunohistochemical analysis revealed hippocampal subregion-specific effects of CSIS and/or Flx treatment on selective protein expressions.


Subject(s)
Depression/metabolism , Fluoxetine/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Proteome/drug effects , Proteome/metabolism , Social Isolation/psychology , Animals , Behavior, Animal/drug effects , Depression/prevention & control , Depression/psychology , Male , Mitochondria/metabolism , Proteomics , Rats
20.
Int J Mol Sci ; 18(10)2017 Oct 10.
Article in English | MEDLINE | ID: mdl-28994702

ABSTRACT

The entry of malignant hepatocytes into blood vessels is a key step in the dissemination and metastasis of hepatocellular carcinoma (HCC). The identification of molecular mechanisms involved in the transmigration of malignant hepatocytes through the endothelial barrier is of high relevance for therapeutic intervention and metastasis prevention. In this study, we employed a model of hepatocellular transmigration that mimics vascular invasion using hepatic sinusoidal endothelial cells and malignant hepatocytes evincing a mesenchymal-like, invasive phenotype by transforming growth factor (TGF)-ß. Labelling of respective cell populations with various stable isotopes and subsequent mass spectrometry analyses allowed the "real-time" detection of molecular changes in both transmigrating hepatocytes and endothelial cells. Interestingly, the proteome profiling revealed 36 and 559 regulated proteins in hepatocytes and endothelial cells, respectively, indicating significant changes during active transmigration that mostly depends on cell-cell interaction rather than on TGF-ß alone. Importantly, matching these in vitro findings with HCC patient data revealed a panel of common molecular alterations including peroxiredoxin-3, epoxide hydrolase, transgelin-2 and collectin 12 that are clinically relevant for the patient's survival. We conclude that hepatocellular plasticity induced by TGF-ß is crucially involved in blood vessel invasion of HCC cells.


Subject(s)
Blood Vessels/pathology , Carcinoma, Hepatocellular/pathology , Hepatocytes/pathology , Liver Neoplasms, Experimental/pathology , Transendothelial and Transepithelial Migration , Transforming Growth Factor beta1/physiology , Animals , Biomarkers, Tumor/analysis , Cell Communication , Cell Line, Transformed , Cell Movement , Epithelial Cells/chemistry , Epithelial Cells/pathology , Epithelial-Mesenchymal Transition/physiology , Hepatocytes/chemistry , Humans , Mice , Proteome/analysis , Proteome/genetics , Transforming Growth Factor beta1/antagonists & inhibitors , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...