Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 12(9): 5444-5451, 2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32080701

ABSTRACT

Self-assembled monolayers (SAMs) deposited on bottom electrodes are commonly used to tune charge carrier injection or blocking in optoelectronic devices. Beside the enhancement of device performance, the fabrication of multifunctional devices in which the output can be modulated by multiple external stimuli remains a challenging target. In this work, we report the functionalization of an indium tin oxide (ITO) electrode with a SAM of a diarylethene derivative designed for optically control the electronic properties. Following the demonstration of dense SAM formation and its photochromic activity, as a proof-of-principle, an organic light-emitting diode (OLED) embedding the light-responsive SAM-covered electrode was fabricated and characterized. Optically addressing the two-terminal device by irradiation with ultraviolet light doubles the electroluminescence. The original value can be restored reversibly by irradiation with visible light. This expanded functionality is based on the photoinduced modulation of the electronic structure of the diarylethene isomers, which impact the charge carriers' confinement within the emissive layer. This approach could be successfully exploited in the field of opto-communication technology, for example to fabricate opto-electronic logic circuits.

2.
Nat Nanotechnol ; 14(4): 347-353, 2019 04.
Article in English | MEDLINE | ID: mdl-30778212

ABSTRACT

Organic light-emitting transistors are pivotal components for emerging opto- and nanoelectronics applications, such as logic circuitries and smart displays. Within this technology sector, the integration of multiple functionalities in a single electronic device remains the key challenge. Here we show optically switchable organic light-emitting transistors fabricated through a judicious combination of light-emitting semiconductors and photochromic molecules. Irradiation of the solution-processed films at selected wavelengths enables the efficient and reversible tuning of charge transport and electroluminescence simultaneously, with a high degree of modulation (on/off ratios up to 500) in the three primary colours. Different emitting patterns can be written and erased through a non-invasive and mask-free process, on a length scale of a few micrometres in a single device, thereby rendering this technology potentially promising for optically gated highly integrated full-colour displays and active optical memory.

3.
ACS Nano ; 10(12): 10768-10777, 2016 12 27.
Article in English | MEDLINE | ID: mdl-28024344

ABSTRACT

Ultrasound-induced liquid-phase exfoliation (UILPE) is an established method to produce single- (SLG) and few-layer (FLG) graphene nanosheets starting from graphite as a precursor. In this paper we investigate the effect of the ultrasonication power in the UILPE process carried out in either N-methyl-2-pyrrolidone (NMP) or ortho-dichlorobenzene (o-DCB). Our experimental results reveal that while the SLGs/FLGs concentration of the NMP dispersions is independent of the power of the ultrasonic bath during the UILPE process, in o-DCB it decreases as the ultrasonication power increases. Moreover, the ultrasonication power has a strong influence on the lateral size of the exfoliated SLGs/FLGs nanosheets in o-DCB. In particular, when UILPE is carried out at ∼600 W, we obtain dispersions composed of graphene nanosheets with a lateral size of 180 nm, whereas at higher power (∼1000 W) we produce graphene nanodots (GNDs) with an average diameter of ∼17 nm. The latter nanostructures exhibit a strong and almost excitation-independent photoluminescence emission in the UV/deep-blue region of the electromagnetic spectrum arising from the GNDs' intrinsic states and a less intense (and strongly excitation wavelength dependent) emission in the green/red region attributed to defect states. Notably, we also observe visible emission with near-infrared excitation at 850 and 900 nm, a fingerprint of the presence of up-conversion processes. Overall, our results highlight the crucial importance of the solvent choice for the UILPE process, which under controlled experimental conditions allows the fine-tuning of the morphological properties, such as lateral size and thickness, of the graphene nanosheets toward the realization of luminescent GNDs.

SELECTION OF CITATIONS
SEARCH DETAIL
...