Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Appl Opt ; 63(6): 1481-1487, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38437359

ABSTRACT

Future far-infrared astrophysics observatories will require focal plane arrays containing thousands of ultrasensitive, superconducting detectors, each of which require efficient optical coupling to the telescope fore-optics. At longer wavelengths, many approaches have been developed, including feedhorn arrays and macroscopic arrays of lenslets. However, with wavelengths as short as 25 µm, optical coupling in the far infrared remains challenging. In this paper, we present an approach to fabricate far-infrared monolithic silicon microlens arrays using grayscale lithography and deep reactive ion etching. The fabricated microlens arrays presented here are designed for two different wavebands: 25-40 µm and 135-240 µm. The microlens arrays have sags as deep as 150 µm, are hexagonally packed with a pixel pitch of 900 µm, and have an overall size as large as 80 by 15 mm. We compare an as-fabricated lens profile to the design profile and calculate that the fabricated lenses would achieve 84% encircled power for the designed detector, which is only 3% less than the designed performance. We also present methods developed for antireflection coating microlens arrays and for a silicon-to-silicon die bonding process to hybridize microlens arrays with detector arrays.

2.
Appl Opt ; 60(29): 9029-9035, 2021 Oct 10.
Article in English | MEDLINE | ID: mdl-34623982

ABSTRACT

Near-field radio holography is a common method for measuring and aligning mirror surfaces for millimeter and sub-millimeter telescopes. In instruments with more than a single mirror, degeneracies arise in the holography measurement, requiring multiple measurements and new fitting methods. We present HoloSim-ML, a Python code for beam simulation and analysis of radio holography data from complex optical systems. This code uses machine learning to efficiently determine the position of hundreds of mirror adjusters on multiple mirrors with few micrometer accuracy. We apply this approach to the example of the Simons Observatory 6 m telescope.

3.
Appl Opt ; 60(4): 823-837, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33690389

ABSTRACT

We present geometrical and physical optics simulation results for the Simons Observatory Large Aperture Telescope. This work was developed as part of the general design process for the telescope, allowing us to evaluate the impact of various design choices on performance metrics and potential systematic effects. The primary goal of the simulations was to evaluate the final design of the reflectors and the cold optics that are now being built. We describe nonsequential ray tracing used to inform the design of the cold optics, including absorbers internal to each optics tube. We discuss ray tracing simulations of the telescope structure that allow us to determine geometries that minimize detector loading and mitigate spurious near-field effects that have not been resolved by the internal baffling. We also describe physical optics simulations, performed over a range of frequencies and field locations, that produce estimates of monochromatic far-field beam patterns, which in turn are used to gauge general optical performance. Finally, we describe simulations that shed light on beam sidelobes from panel gap diffraction.

4.
Appl Opt ; 56(10): 2796-2803, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28375244

ABSTRACT

Refractive optical elements are widely used in millimeter and sub-millimeter (sub-mm) astronomical telescopes. High-resistivity silicon is an excellent material for dielectric lenses given its low loss tangent, high thermal conductivity, and high index of refraction. The high index of refraction of silicon causes a large Fresnel reflectance at the vacuum-silicon interface (up to 30%), which can be reduced with an anti-reflection (AR) coating. In this work, we report techniques for efficiently AR coating silicon at sub-mm wavelengths using deep reactive ion etching (DRIE) and bonding the coated silicon to another silicon optic. Silicon wafers of 100 mm diameter (1 mm thick) were coated and bonded using the silicon direct bonding technique at high temperature (1100°C). No glue is used in this process. Optical tests using a Fourier transform spectrometer show sub-percent reflections for a single-layer DRIE AR coating designed for use at 320 µm on a single wafer. Cryogenic (10 K) measurements of a bonded pair of AR-coated wafers also reached sub-percent reflections. A prototype two-layer DRIE AR coating to reduce reflections and increase bandwidth is presented, and plans for extending this approach are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL