Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 482-483: 269-75, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24657372

ABSTRACT

A field plot experiment was carried out to evaluate the impact of spreading chicken manure containing enrofloxacin (ENR) and its metabolite ciprofloxacin (CIP), on the levels of CIP-resistant Enterobacteriaceae in soil. The manures from chickens treated with ENR and from untreated control chickens were applied on six plots. Total and CIP-resistant Enterobacteriaceae were counted on Violet Red Bile Glucose medium containing 0 to 16mg L(-1) of CIP. A total of 145 isolates were genotyped by enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR). The minimum inhibitory concentration (MIC) of CIP for the isolates of each ERIC-PCR profile was determined. The most frequently isolated Enterobacteriaceae included Escherichia coli, and to a lesser extent, Enterobacter and 5 other genera from environmental origin. The composition of the E. coli community differed between manure and manured soil suggesting that the E. coli genotypes determined by ERIC-PCR varied significantly in their ability to survive in soil. One of these genotypes, including both susceptible and resistant isolates, was detected up to 89 days after the manure was applied. Most of the E. coli isolated in soil amended with manure from treated chickens was resistant to CIP (with a MIC ranging between 2 and 32mg L(-1)). In contrast, despite the presence of ENR in soil at concentrations ranging from 13-518µg kg(-1), the environmental Enterobacteriaceae isolates had a CIP MIC≤0.064mg L(-1), except one isolate which had a MIC of 0.25mg L(-1), These results showed that spreading manure from ENR-treated chickens enabled CIP-resistant E. coli to persist for at least three months in the soil. However, neither the presence of fluoroquinolones, nor the persistence of CIP-resistant E. coli, increased the CIP-susceptibility of environmental Enterobacteriaceae.


Subject(s)
Anti-Bacterial Agents/pharmacology , Ciprofloxacin/pharmacology , Enterobacteriaceae/growth & development , Manure/microbiology , Soil Microbiology , Animal Husbandry , Animals , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial/genetics , Enrofloxacin , Enterobacteriaceae/classification , Enterobacteriaceae/genetics , Fluoroquinolones/therapeutic use , Microbial Sensitivity Tests , Refuse Disposal , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...