Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 120(5): 057401, 2018 Feb 02.
Article in English | MEDLINE | ID: mdl-29481149

ABSTRACT

Elementary quasiparticles in a two-dimensional electron system can be described as exciton polarons since electron-exciton interactions ensures dressing of excitons by Fermi-sea electron-hole pair excitations. A relevant open question is the modification of this description when the electrons occupy flat bands and electron-electron interactions become prominent. Here, we perform cavity spectroscopy of a two-dimensional electron system in the strong coupling regime, where polariton resonances carry signatures of strongly correlated quantum Hall phases. By measuring the evolution of the polariton splitting under an external magnetic field, we demonstrate the modification of polaron dressing that we associate with filling factor dependent electron-exciton interactions.

2.
Phys Rev Lett ; 118(23): 237404, 2017 Jun 09.
Article in English | MEDLINE | ID: mdl-28644665

ABSTRACT

For applications exploiting the valley pseudospin degree of freedom in transition metal dichalcogenide monolayers, efficient preparation of electrons or holes in a single valley is essential. Here, we show that a magnetic field of 7 T leads to a near-complete valley polarization of electrons in a MoSe_{2} monolayer with a density 1.6×10^{12} cm^{-2}; in the absence of exchange interactions favoring single-valley occupancy, a similar degree of valley polarization would have required a pseudospin g factor of 38. To investigate the magnetic response, we use polarization resolved photoluminescence as well as resonant reflection measurements. In the latter, we observe gate voltage dependent transfer of oscillator strength from the exciton to the attractive Fermi polaron: stark differences in the spectrum of the two light helicities provide a confirmation of valley polarization. Our findings suggest an interaction induced giant paramagnetic response of MoSe_{2}, which paves the way for valleytronics applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...