Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 5(23): 13641-13655, 2020 Jun 16.
Article in English | MEDLINE | ID: mdl-32566829

ABSTRACT

The release of crude oil and water-soluble dyes into our marine environment is a major global problem. An efficient semiconductor Ag-Ag3PO4 photocatalyst was synthesized using formaldehyde as a reducing agent to form surface active Ag on Ag3PO4 under microwave radiation for heating, and its potential in destroying environmental pollutants has been examined. The diffuse reflectance spectroscopy of Ag-Ag3PO4 revealed an enhanced absorption in the visible light region. The rate of photocatalytic degradation of rhodamine B by Ag-Ag3PO4 was over 4-fold compared to Ag3PO4. The potential application of Ag-Ag3PO4 in oil spill remediation was also examined through photocatalytic degradation of benzene, n-hexane, and 1:1 v/v benzene/methanol crude oil-soluble fractions. UV-vis and gas chromatography-mass spectrometry analysis of the crude oil components after visible light irradiation showed excellent degradation. The photocatalytic efficiency enhancement of Ag-Ag3PO4 is attributed to the excellent electron trapping of silver nanoparticles deposited on the surface of Ag3PO4. This work will motivate future studies to develop recyclable visible light photocatalysts for many applications.

2.
Photochem Photobiol Sci ; 18(5): 1009-1019, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30724960

ABSTRACT

Dental bleaching is an important part of aesthetic dentistry. Various strategies have been created to enhance the bleaching efficacy. As one such strategy, light-activated nanoparticles that enable localized generation of reactive oxygen species have been developed. Here, we evaluated the cellular response to experimental gels containing these materials in in vitro models. L-929 cells, 3T3 cells, and gingival fibroblasts were exposed to the gels at 50%, 10%, 2%, 0.4%, 0.08%, 0.016%, and 0.0032%. The gels contained TiO2/Ag nanoparticles, TiO2 nanoparticles, hydrogen peroxide (6% hydrogen peroxide), or no added component and were tested with and without exposure to light. Cells were exposed to gels for 24 h or for 30 min. The latter case mimics the clinical situation of a short bleaching gel exposure. Metabolic activity and cell viability were evaluated with MTT and neutral red assays, respectively. We found a dose-dependent reduction of formazan formation and neutral red staining with gels containing TiO2/Ag nanoparticles or TiO2 nanoparticles in the 24 h setting with and without illumination. The strongest reduction, which was not dose-dependent in the evaluated concentrations, was found for the gel containing hydrogen peroxide. Gels with TiO2 nanoparticles showed a similar response to gel without particles. TiO2/Ag gel showed a slightly higher impact. When the gels were removed by rinsing after 30 min of exposure without light illumination, gel containing TiO2/Ag nanoparticles showed a stronger reduction of formazan formation and neutral red staining than gel containing TiO2 particles. Exposure of cells for 30 min under illumination and consequent rinsing off the gels also showed that Ag-containing particles can have a higher impact on the metabolic activity and viability than particles from TiO2. Overall our results show that experimental bleaching gels containing TiO2/Ag or TiO2 nanoparticles are less cytotoxic than hydrogen peroxide-containing gel. When gels are removed, gel containing TiO2/Ag particles exhibit a stronger reduction of metabolic activity and viability than the gel containing TiO2.


Subject(s)
Hydrogen Peroxide/chemistry , Light , Nanoparticles/chemistry , Silver/chemistry , Titanium/chemistry , Tooth Bleaching , 3T3 Cells , Animals , Cell Survival/drug effects , Cells, Cultured , Fibroblasts/drug effects , Fibroblasts/metabolism , Gels/chemistry , Humans , Hydrogen Peroxide/pharmacology , Mice
3.
J Vis Exp ; (136)2018 06 14.
Article in English | MEDLINE | ID: mdl-29985339

ABSTRACT

We demonstrate a versatile protocol to be used for determining the effectiveness of photocatalysts in degrading indoor air concentration (ppb) volatile organic carbons (VOCs), illustrating this with a titanium dioxide based catalyst, and the VOC 2-propanol. The protocol takes advantage of field asymmetric ion mobility spectroscopy (FAIMS), an analysis tool that is capable of continuously identifying and monitoring the concentration of VOCs such as 2-propanol and acetone at the ppb level. The continuous nature of FAIMS allows detailed kinetic analysis, and long-term reactions, offering a significant advantage over gas chromatography, a batch process traditionally used in air purification characterization. The use of FAIMS in photocatalytic air purification has only recently been used for the first time, and with the protocol illustrated here, the flexibility in allowing alternative VOCs and photocatalysts to be tested using comparable protocols offers a unique system to elucidate photocatalytic air purification reactions at low concentrations.


Subject(s)
2-Propanol/chemistry , Air Pollution, Indoor/analysis , Environmental Monitoring/methods , Ion Mobility Spectrometry/methods , Photochemical Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...