Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Elife ; 112022 01 05.
Article in English | MEDLINE | ID: mdl-34984977

ABSTRACT

Eukaryotic genomes express numerous long intergenic non-coding RNAs (lincRNAs) that do not overlap any coding genes. Some lincRNAs function in various aspects of gene regulation, but it is not clear in general to what extent lincRNAs contribute to the information flow from genotype to phenotype. To explore this question, we systematically analysed cellular roles of lincRNAs in Schizosaccharomyces pombe. Using seamless CRISPR/Cas9-based genome editing, we deleted 141 lincRNA genes to broadly phenotype these mutants, together with 238 diverse coding-gene mutants for functional context. We applied high-throughput colony-based assays to determine mutant growth and viability in benign conditions and in response to 145 different nutrient, drug, and stress conditions. These analyses uncovered phenotypes for 47.5% of the lincRNAs and 96% of the protein-coding genes. For 110 lincRNA mutants, we also performed high-throughput microscopy and flow cytometry assays, linking 37% of these lincRNAs with cell-size and/or cell-cycle control. With all assays combined, we detected phenotypes for 84 (59.6%) of all lincRNA deletion mutants tested. For complementary functional inference, we analysed colony growth of strains ectopically overexpressing 113 lincRNA genes under 47 different conditions. Of these overexpression strains, 102 (90.3%) showed altered growth under certain conditions. Clustering analyses provided further functional clues and relationships for some of the lincRNAs. These rich phenomics datasets associate lincRNA mutants with hundreds of phenotypes, indicating that most of the lincRNAs analysed exert cellular functions in specific environmental or physiological contexts. This study provides groundwork to further dissect the roles of these lincRNAs in the relevant conditions.


Subject(s)
RNA, Fungal/genetics , RNA, Untranslated/genetics , Schizosaccharomyces/genetics , RNA, Fungal/metabolism , RNA, Untranslated/metabolism , Schizosaccharomyces/metabolism
3.
PLoS Genet ; 17(8): e1009784, 2021 08.
Article in English | MEDLINE | ID: mdl-34464389

ABSTRACT

Aberrant repair of DNA double-strand breaks can recombine distant chromosomal breakpoints. Chromosomal rearrangements compromise genome function and are a hallmark of ageing. Rearrangements are challenging to detect in non-dividing cell populations, because they reflect individually rare, heterogeneous events. The genomic distribution of de novo rearrangements in non-dividing cells, and their dynamics during ageing, remain therefore poorly characterized. Studies of genomic instability during ageing have focussed on mitochondrial DNA, small genetic variants, or proliferating cells. To characterize genome rearrangements during cellular ageing in non-dividing cells, we interrogated a single diagnostic measure, DNA breakpoint junctions, using Schizosaccharomyces pombe as a model system. Aberrant DNA junctions that accumulated with age were associated with microhomology sequences and R-loops. Global hotspots for age-associated breakpoint formation were evident near telomeric genes and linked to remote breakpoints elsewhere in the genome, including the mitochondrial chromosome. Formation of breakpoint junctions at global hotspots was inhibited by the Sir2 histone deacetylase and might be triggered by an age-dependent de-repression of chromatin silencing. An unexpected mechanism of genomic instability may cause more local hotspots: age-associated reduction in an RNA-binding protein triggering R-loops at target loci. This result suggests that biological processes other than transcription or replication can drive genome rearrangements. Notably, we detected similar signatures of genome rearrangements that accumulated in old brain cells of humans. These findings provide insights into the unique patterns and possible mechanisms of genome rearrangements in non-dividing cells, which can be promoted by ageing-related changes in gene-regulatory proteins.


Subject(s)
Gene Rearrangement/genetics , Genomic Instability/genetics , R-Loop Structures/genetics , Aging/genetics , Chromosome Aberrations , Chromosome Breakpoints , DNA Breaks, Double-Stranded , Genomics/methods , Models, Genetic , Mutation/genetics , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Telomere/genetics
4.
Microb Cell ; 8(7): 146-160, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34250083

ABSTRACT

Ageing-related processes are largely conserved, with simple organisms remaining the main platform to discover and dissect new ageing-associated genes. Yeasts provide potent model systems to study cellular ageing owing their amenability to systematic functional assays under controlled conditions. Even with yeast cells, however, ageing assays can be laborious and resource-intensive. Here we present improved experimental and computational methods to study chronological lifespan in Schizosaccharomyces pombe. We decoded the barcodes for 3206 mutants of the latest gene-deletion library, enabling the parallel profiling of ~700 additional mutants compared to previous screens. We then applied a refined method of barcode sequencing (Bar-seq), addressing technical and statistical issues raised by persisting DNA in dead cells and sampling bottlenecks in aged cultures, to screen for mutants showing altered lifespan during stationary phase. This screen identified 341 long-lived mutants and 1246 short-lived mutants which point to many previously unknown ageing-associated genes, including 46 conserved but entirely uncharacterized genes. The ageing-associated genes showed coherent enrichments in processes also associated with human ageing, particularly with respect to ageing in non-proliferative brain cells. We also developed an automated colony-forming unit assay to facilitate medium- to high-throughput chronological-lifespan studies by saving time and resources compared to the traditional assay. Results from the Bar-seq screen showed good agreement with this new assay. This study provides an effective methodological platform and identifies many new ageing-associated genes as a framework for analysing cellular ageing in yeast and beyond.

5.
Elife ; 92020 06 16.
Article in English | MEDLINE | ID: mdl-32543370

ABSTRACT

Microbial fitness screens are a key technique in functional genomics. We present an all-in-one solution, pyphe, for automating and improving data analysis pipelines associated with large-scale fitness screens, including image acquisition and quantification, data normalisation, and statistical analysis. Pyphe is versatile and processes fitness data from colony sizes, viability scores from phloxine B staining or colony growth curves, all obtained with inexpensive transilluminating flatbed scanners. We apply pyphe to show that the fitness information contained in late endpoint measurements of colony sizes is similar to maximum growth slopes from time series. We phenotype gene-deletion strains of fission yeast in 59,350 individual fitness assays in 70 conditions, revealing that colony size and viability provide complementary, independent information. Viability scores obtained from quantifying the redness of phloxine-stained colonies accurately reflect the fraction of live cells within colonies. Pyphe is user-friendly, open-source and fully documented, illustrated by applications to diverse fitness analysis scenarios.


Subject(s)
Cell Survival , Colony Count, Microbial/methods , Genetic Fitness , Phenotype , Schizosaccharomyces/physiology , Colony Count, Microbial/instrumentation , Gene Deletion , Schizosaccharomyces/genetics , Schizosaccharomyces/growth & development , Software
6.
RNA ; 24(9): 1195-1213, 2018 09.
Article in English | MEDLINE | ID: mdl-29914874

ABSTRACT

Long noncoding RNAs (lncRNAs), which are longer than 200 nucleotides but often unstable, contribute a substantial and diverse portion to pervasive noncoding transcriptomes. Most lncRNAs are poorly annotated and understood, although several play important roles in gene regulation and diseases. Here we systematically uncover and analyze lncRNAs in Schizosaccharomyces pombe. Based on RNA-seq data from twelve RNA-processing mutants and nine physiological conditions, we identify 5775 novel lncRNAs, nearly 4× the previously annotated lncRNAs. The expression of most lncRNAs becomes strongly induced under the genetic and physiological perturbations, most notably during late meiosis. Most lncRNAs are cryptic and suppressed by three RNA-processing pathways: the nuclear exosome, cytoplasmic exonuclease, and RNAi. Double-mutant analyses reveal substantial coordination and redundancy among these pathways. We classify lncRNAs by their dominant pathway into cryptic unstable transcripts (CUTs), Xrn1-sensitive unstable transcripts (XUTs), and Dicer-sensitive unstable transcripts (DUTs). XUTs and DUTs are enriched for antisense lncRNAs, while CUTs are often bidirectional and actively translated. The cytoplasmic exonuclease, along with RNAi, dampens the expression of thousands of lncRNAs and mRNAs that become induced during meiosis. Antisense lncRNA expression mostly negatively correlates with sense mRNA expression in the physiological, but not the genetic conditions. Intergenic and bidirectional lncRNAs emerge from nucleosome-depleted regions, upstream of positioned nucleosomes. Our results highlight both similarities and differences to lncRNA regulation in budding yeast. This broad survey of the lncRNA repertoire and characteristics in S. pombe, and the interwoven regulatory pathways that target lncRNAs, provides a rich framework for their further functional analyses.


Subject(s)
Exonucleases/metabolism , Exosomes/metabolism , RNA, Long Noncoding/genetics , Schizosaccharomyces/genetics , Sequence Analysis, RNA/methods , Cell Nucleus/metabolism , Cytoplasm/enzymology , Fungal Proteins/metabolism , Gene Expression Profiling/methods , Gene Expression Regulation, Fungal , Meiosis , Molecular Sequence Annotation , Mutation , RNA Interference , RNA Stability , RNA, Fungal/genetics , RNA, Long Noncoding/chemistry , Schizosaccharomyces/chemistry , Schizosaccharomyces/enzymology
7.
Wellcome Open Res ; 1: 19, 2016.
Article in English | MEDLINE | ID: mdl-28612052

ABSTRACT

In the fission yeast Schizosaccharomyces pombe the prevailing approach for gene manipulations is based on homologous recombination of a PCR product that contains genomic target sequences and a selectable marker. The CRISPR/Cas9 system has recently been implemented in fission yeast, which allows for seamless genome editing without integration of a selection marker or leaving any other genomic 'scars'. The published method involves manual design of the single guide RNA (sgRNA), and digestion of a large plasmid with a problematic restriction enzyme to clone the sgRNA. To increase the efficiency of this approach, we have established and optimized a PCR-based system to clone the sgRNA without restriction enzymes into a plasmid with a dominant natMX6 (nourseothricin) selection marker. We also provide a web-tool, CRISPR4P, to support the design of the sgRNAs and the primers required for the entire process of seamless DNA deletion. Moreover, we report the preparation of G1-synchronized and cryopreserved S. pombe cells, which greatly increases the efficiency and speed for transformations, and may also facilitate standard gene manipulations. Applying this optimized CRISPR/Cas9-based approach, we have successfully deleted over 80 different non-coding RNA genes, which are generally lowly expressed, and have inserted 7 point mutations in 4 different genomic regions.

8.
Article in English | MEDLINE | ID: mdl-26279681

ABSTRACT

BACKGROUND: Heterochromatin is essential for chromosome segregation, gene silencing and genome integrity. The fission yeast Schizosaccharomyces pombe contains heterochromatin at centromeres, subtelomeres, and mating type genes, as well as at small islands of meiotic genes dispersed across the genome. This heterochromatin is generated by partially redundant mechanisms, including the production of small interfering RNAs (siRNAs) that are incorporated into the RITS protein complex (RNAi-Induced Transcriptional Silencing). The assembly of heterochromatin islands requires the function of the RNA-binding protein Mmi1, which recruits RITS to its mRNA targets and to heterochromatin islands. In addition, Mmi1 directs its targets to an exosome-dependent RNA elimination pathway. RESULTS: Ccr4-Not is a conserved multiprotein complex that regulates gene expression at multiple levels, including RNA degradation and translation. We show here that Ccr4-Not is recruited by Mmi1 to its RNA targets. Surprisingly, Ccr4 and Caf1 (the mRNA deadenylase catalytic subunits of the Ccr4-Not complex) are not necessary for the degradation or translation of Mmi1 RNA targets, but are essential for heterochromatin integrity at Mmi1-dependent islands and, independently of Mmi1, at subtelomeric regions. Both roles require the deadenylase activity of Ccr4 and the Mot2/Not4 protein, a ubiquitin ligase that is also part of the complex. Genetic evidence shows that Ccr4-mediated silencing is essential for normal cell growth, indicating that this novel regulation is physiologically relevant. Moreover, Ccr4 interacts with components of the RITS complex in a Mmi1-independent manner. CONCLUSIONS: Taken together, our results demonstrate that the Ccr4-Not complex is required for heterochromatin integrity in both Mmi1-dependent and Mmi1-independent pathways.

9.
Genome Res ; 25(6): 884-96, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25883323

ABSTRACT

Exon skipping is considered a principal mechanism by which eukaryotic cells expand their transcriptome and proteome repertoires, creating different splice variants with distinct cellular functions. Here we analyze RNA-seq data from 116 transcriptomes in fission yeast (Schizosaccharomyces pombe), covering multiple physiological conditions as well as transcriptional and RNA processing mutants. We applied brute-force algorithms to detect all possible exon-skipping events, which were widespread but rare compared to normal splicing events. Exon-skipping events increased in cells deficient for the nuclear exosome or the 5'-3' exonuclease Dhp1, and also at late stages of meiotic differentiation when nuclear-exosome transcripts decreased. The pervasive exon-skipping transcripts were stochastic, did not increase in specific physiological conditions, and were mostly present at less than one copy per cell, even in the absence of nuclear RNA surveillance and during late meiosis. These exon-skipping transcripts are therefore unlikely to be functional and may reflect splicing errors that are actively removed by nuclear RNA surveillance. The average splicing rate by exon skipping was ∼ 0.24% in wild type and ∼ 1.75% in nuclear exonuclease mutants. We also detected approximately 250 circular RNAs derived from single or multiple exons. These circular RNAs were rare and stochastic, although a few became stabilized during quiescence and in splicing mutants. Using an exhaustive search algorithm, we also uncovered thousands of previously unknown splice sites, indicating pervasive splicing; yet most of these splicing variants were cryptic and increased in nuclear degradation mutants. This study highlights widespread but low frequency alternative or aberrant splicing events that are targeted by nuclear RNA surveillance.


Subject(s)
Exons , Genome, Fungal , RNA, Nuclear/genetics , Schizosaccharomyces/genetics , Alternative Splicing , Exoribonucleases/genetics , Exoribonucleases/metabolism , Meiosis , RNA/genetics , RNA/metabolism , RNA, Circular , RNA, Nuclear/metabolism , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Sequence Alignment , Sequence Analysis, RNA , Transcriptome
10.
PLoS Genet ; 10(11): e1004684, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25375137

ABSTRACT

mRNA half-lives are transcript-specific and vary over a range of more than 100-fold in eukaryotic cells. mRNA stabilities can be regulated by sequence-specific RNA-binding proteins (RBPs), which bind to regulatory sequence elements and modulate the interaction of the mRNA with the cellular RNA degradation machinery. However, it is unclear if this kind of regulation is sufficient to explain the large range of mRNA stabilities. To address this question, we examined the transcriptome of 74 Schizosaccharomyces pombe strains carrying deletions in non-essential genes encoding predicted RBPs (86% of all such genes). We identified 25 strains that displayed changes in the levels of between 4 and 104 mRNAs. The putative targets of these RBPs formed biologically coherent groups, defining regulons involved in cell separation, ribosome biogenesis, meiotic progression, stress responses and mitochondrial function. Moreover, mRNAs in these groups were enriched in specific sequence motifs in their coding sequences and untranslated regions, suggesting that they are coregulated at the posttranscriptional level. We performed genome-wide RNA stability measurements for several RBP mutants, and confirmed that the altered mRNA levels were caused by changes in their stabilities. Although RBPs regulate the decay rates of multiple regulons, only 16% of all S. pombe mRNAs were affected in any of the 74 deletion strains. This suggests that other players or mechanisms are required to generate the observed range of RNA half-lives of a eukaryotic transcriptome.


Subject(s)
RNA Stability/genetics , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Transcriptome/genetics , Gene Expression Regulation , Genome, Fungal , Schizosaccharomyces , Untranslated Regions/genetics
11.
Mol Syst Biol ; 6: 380, 2010 Jun 08.
Article in English | MEDLINE | ID: mdl-20531409

ABSTRACT

The function of transcription in dynamic gene expression programs has been extensively studied, but little is known about how it is integrated with RNA turnover at the genome-wide level. We investigated these questions using the meiotic gene expression program of Schizosaccharomyces pombe. We identified over 80 transcripts that co-purify with the meiotic-specific Meu5p RNA-binding protein. Their levels and half-lives were reduced in meu5 mutants, demonstrating that Meu5p stabilizes its targets. Most Meu5p-bound RNAs were also targets of the Mei4p transcription factor, which induces the transient expression of approximately 500 meiotic genes. Although many Mei4p targets showed sharp expression peaks, Meu5p targets had broad expression profiles. In the absence of meu5, all Mei4p targets were expressed with similar kinetics, indicating that Meu5p alters the global features of the gene expression program. As Mei4p activates meu5 transcription, Mei4p, Meu5p and their common targets form a feed-forward loop, a motif common in transcriptional networks but not studied in the context of mRNA decay. Our data provide insight into the topology of regulatory networks integrating transcriptional and posttranscriptional controls.


Subject(s)
Cell Differentiation/genetics , Gene Expression Regulation, Fungal , RNA Stability/genetics , Schizosaccharomyces/cytology , Schizosaccharomyces/genetics , Transcription, Genetic , Down-Regulation/genetics , Gene Expression Profiling , Genes, Fungal/genetics , Meiosis/genetics , Protein Binding , RNA, Fungal/genetics , RNA, Fungal/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Spores, Fungal/cytology , Spores, Fungal/genetics , Time Factors
12.
EMBO J ; 29(5): 934-42, 2010 Mar 03.
Article in English | MEDLINE | ID: mdl-20094030

ABSTRACT

DNA replication origins (ORI) in Schizosaccharomyces pombe colocalize with adenine and thymine (A+T)-rich regions, and earlier analyses have established a size from 0.5 to over 3 kb for a DNA fragment to drive replication in plasmid assays. We have asked what are the requirements for ORI function in the chromosomal context. By designing artificial ORIs, we have found that A+T-rich fragments as short as 100 bp without homology to S. pombe DNA are able to initiate replication in the genome. On the other hand, functional dissection of endogenous ORIs has revealed that some of them span a few kilobases and include several modules that may be as short as 25-30 contiguous A+Ts capable of initiating replication from ectopic chromosome positions. The search for elements with these characteristics across the genome has uncovered an earlier unnoticed class of low-efficiency ORIs that fire late during S phase. These results indicate that ORI specification and dynamics varies widely in S. pombe, ranging from very short elements to large regions reminiscent of replication initiation zones in mammals.


Subject(s)
Replication Origin/genetics , Schizosaccharomyces/metabolism , AT Rich Sequence/genetics , Cell Cycle/genetics , Cell Cycle/physiology , Chromatin Immunoprecipitation , DNA, Fungal/chemistry , DNA, Fungal/genetics , Electrophoresis, Gel, Two-Dimensional , Fungal Proteins/genetics , Fungal Proteins/metabolism , Schizosaccharomyces/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...