Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 13(1): 12967, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37563162

ABSTRACT

Large-scale breeding failures, such as offspring die-offs, can disproportionately impact wildlife populations that are characterized by a few large colonies. However, breeding monitoring-and thus investigations of such die-offs-is especially challenging in species with long reproductive cycles. We investigate two unresolved dramatic breeding failures that occurred in consecutive years (2009 and 2010) in a large king penguin Aptenodytes patagonicus colony, a long-lived species with a breeding cycle lasting over a year. Here we found that a single period, winter 2009, was likely responsible for the occurrence of breeding anomalies during both breeding seasons, suggesting that adults experienced poor foraging conditions at sea at that time. Following that unfavorable winter, the 2009 breeding cohort-who were entering the late stage of chick-rearing-immediately experienced high chick mortality. Meanwhile, the 2010 breeding cohort greatly delayed their arrival and egg laying, which would have otherwise started not long after the winter. The 2010 breeding season continued to display anomalies during the incubation and chick-rearing period, such as high abandonment rate, long foraging trips and eventually the death of all chicks in winter 2010. These anomalies could have resulted from either a domino-effect caused by the delayed laying, the continuation of poor foraging conditions, or both. This study provides an example of a large-scale catastrophic breeding failure and highlights the importance of the winter period on phenology and reproduction success for wildlife that breed in few large colonies.


Subject(s)
Spheniscidae , Animals , Seasons , Chickens , Animals, Wild , Reproduction
3.
Sci Rep ; 11(1): 15805, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34349142

ABSTRACT

Oceanic frontal zones have been shown to deeply influence the distribution of primary producers and, at the other extreme of the trophic web, top predators. However, the relationship between these structures and intermediate trophic levels is much more obscure. In this paper we address this knowledge gap by comparing acoustic measurements of mesopelagic fish concentrations to satellite-derived fine-scale Lagrangian Coherent Structures in the Indian sector of the Southern Ocean. First, we demonstrate that higher fish concentrations occur more frequently in correspondence with strong Lagrangian Coherent Structures. Secondly, we illustrate that, while increased fish densities are more likely to be observed over these structures, the presence of a fine-scale feature does not imply a concomitant fish accumulation, as other factors affect fish distribution. Thirdly, we show that, when only chlorophyll-rich waters are considered, front intensity modulates significantly more the local fish concentration. Finally, we discuss a model representing fish movement along Lagrangian features, specifically built for mid-trophic levels. Its results, obtained with realistic parameters, are qualitatively consistent with the observations and the spatio-temporal scales analysed. Overall, these findings may help to integrate intermediate trophic levels in trophic models, which can ultimately support management and conservation policies.

4.
Biol Lett ; 12(8)2016 08.
Article in English | MEDLINE | ID: mdl-27555651

ABSTRACT

It is well recognized that most marine vertebrates, and especially tetrapods, precisely orient and actively move in apparently homogeneous oceanic environments. Here, we investigate the presumptive role of oceanic currents in biogeographic patterns observed in a secondarily marine tetrapod, the yellow-bellied sea snake (Hydrophis [Pelamis] platurus). State-of-the-art world ocean circulation models show how H. platurus, the only pelagic species of sea snake, can potentially exploit oceanic currents to disperse and maintain population mixing between localities that spread over two-thirds of the Earth's circumference. The very close association of these snakes with surface currents seems to provide a highly efficient dispersal mechanism that allowed this species to range extensively and relatively quickly well beyond the central Indo-Pacific area, the centre of origin, abundance and diversity of sea snakes. Our results further suggest that the pan-oceanic population of this species must be extraordinarily large.


Subject(s)
Elapidae , Animals , Oceans and Seas
5.
Nat Commun ; 6: 8220, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26506134

ABSTRACT

Determining the links between the behavioural and population responses of wild species to environmental variations is critical for understanding the impact of climate variability on ecosystems. Using long-term data sets, we show how large-scale climatic anomalies in the Southern Hemisphere affect the foraging behaviour and population dynamics of a key marine predator, the king penguin. When large-scale subtropical dipole events occur simultaneously in both subtropical Southern Indian and Atlantic Oceans, they generate tropical anomalies that shift the foraging zone southward. Consequently the distances that penguins foraged from the colony and their feeding depths increased and the population size decreased. This represents an example of a robust and fast impact of large-scale climatic anomalies affecting a marine predator through changes in its at-sea behaviour and demography, despite lack of information on prey availability. Our results highlight a possible behavioural mechanism through which climate variability may affect population processes.


Subject(s)
Ecosystem , Predatory Behavior , Spheniscidae/physiology , Animals , Atlantic Ocean , Climate Change , Feeding Behavior , Female , Indian Ocean , Male , Population Dynamics , Seasons
6.
J R Soc Interface ; 9(77): 3351-8, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-22951344

ABSTRACT

Marine top predators such as seabirds are useful indicators of the integrated response of the marine ecosystem to environmental variability at different scales. Large-scale physical gradients constrain seabird habitat. Birds however respond behaviourally to physical heterogeneity at much smaller scales. Here, we use, for the first time, three-dimensional GPS tracking of a seabird, the great frigatebird (Fregata minor), in the Mozambique Channel. These data, which provide at the same time high-resolution vertical and horizontal positions, allow us to relate the behaviour of frigatebirds to the physical environment at the (sub-)mesoscale (10-100 km, days-weeks). Behavioural patterns are classified based on the birds' vertical displacement (e.g. fast/slow ascents and descents), and are overlaid on maps of physical properties of the ocean-atmosphere interface, obtained by a nonlinear analysis of multi-satellite data. We find that frigatebirds modify their behaviours concurrently to transport and thermal fronts. Our results suggest that the birds' co-occurrence with these structures is a consequence of their search not only for food (preferentially searched over thermal fronts) but also for upward vertical wind. This is also supported by their relationship with mesoscale patterns of wind divergence. Our multi-disciplinary method can be applied to forthcoming high-resolution animal tracking data, and aims to provide a mechanistic understanding of animals' habitat choice and of marine ecosystem responses to environmental change.


Subject(s)
Air Movements , Behavior, Animal , Birds/physiology , Geographic Information Systems , Remote Sensing Technology/methods , Animals , Climate Change , Ecosystem , Nonlinear Dynamics , Oceans and Seas , Wind
7.
Proc Biol Sci ; 274(1624): 2385-91, 2007 Oct 07.
Article in English | MEDLINE | ID: mdl-17669726

ABSTRACT

Despite increasing evidence that marine predators associate with mesoscale eddies, how these marine features influence foraging movements is still unclear. This study investigates the relationship of at-sea movements of king penguins to mesoscale eddies using oceanographic remote sensing and movement data from 43 individual trips over 4 years. Simultaneous satellite measurements provided information on gradients of sea surface temperature and currents associated with eddies determined from altimetry. Penguins tended to swim rapidly with currents as they travelled towards foraging zones. Swimming speed indicative of foraging occurred within mesoscale fronts and strong currents associated with eddies at the Polar Front. These results demonstrate the importance of mesoscale eddies in directing foraging efforts to allow predators to rapidly get to rich areas where high concentrations of prey are likely to be encountered. When returning to the colony to relieve the incubating partner or to feed the chick, the birds followed a direct and rapid path, seemingly ignoring currents.


Subject(s)
Animal Migration , Spheniscidae/physiology , Water Movements , Animals , Seawater/chemistry , Swimming , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...