Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Biomed Opt Express ; 15(5): 3265-3284, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38855664

ABSTRACT

It has been known for more than 220 years that the image quality of the human eye is significantly degraded by chromatic aberrations. Recently, it was shown experimentally that correcting chromatic aberrations results in a 0.2- to 0.8-line improvement in visual acuity. Here we ask, is this expected? We developed tools that enable simulations of the optical impact of physiologically relevant amounts of chromatic aberration in real human eyes and combined these with tools that compute the visual acuity of an ideal observer. This allows us to characterize the theoretical impact of chromatic aberration correction on visual acuity. Results indicate a substantive improvement of 0.4- to 2-lines in ideal observer visual acuity with chromatic aberration correction. Ideal observer thresholds benefit significantly more from correction of longitudinal than correction of transverse chromatic aberration. Finally, improvements in ideal observer visual acuity are greater for subjects with less monochromatic aberration, such that subjects with better baseline optical quality benefit most from correction of chromatic aberrations.

2.
PLoS One ; 17(11): e0278261, 2022.
Article in English | MEDLINE | ID: mdl-36445926

ABSTRACT

The primate fovea is specialized for high acuity chromatic vision, with the highest density of cone photoreceptors and a disproportionately large representation in visual cortex. The unique visual properties conferred by the fovea are conveyed to the brain by retinal ganglion cells, the somas of which lie at the margin of the foveal pit. Microelectrode recordings of these centermost retinal ganglion cells have been challenging due to the fragility of the fovea in the excised retina. Here we overcome this challenge by combining high resolution fluorescence adaptive optics ophthalmoscopy with calcium imaging to optically record functional responses of foveal retinal ganglion cells in the living eye. We use this approach to study the chromatic responses and spatial transfer functions of retinal ganglion cells using spatially uniform fields modulated in different directions in color space and monochromatic drifting gratings. We recorded from over 350 cells across three Macaca fascicularis primates over a time period of weeks to months. We find that the majority of the L vs. M cone opponent cells serving the most central foveolar cones have spatial transfer functions that peak at high spatial frequencies (20-40 c/deg), reflecting strong surround inhibition that sacrifices sensitivity at low spatial frequencies but preserves the transmission of fine detail in the retinal image. In addition, we fit to the drifting grating data a detailed model of how ganglion cell responses draw on the cone mosaic to derive receptive field properties of L vs. M cone opponent cells at the very center of the foveola. The fits are consistent with the hypothesis that foveal midget ganglion cells are specialized to preserve information at the resolution of the cone mosaic. By characterizing the functional properties of retinal ganglion cells in vivo through adaptive optics, we characterize the response characteristics of these cells in situ.


Subject(s)
Fovea Centralis , Retinal Ganglion Cells , Animals , Macaca fascicularis , Retina , Retinal Cone Photoreceptor Cells
3.
Prog Brain Res ; 273(1): 199-229, 2022.
Article in English | MEDLINE | ID: mdl-35940717

ABSTRACT

For more than two centuries scientists and engineers have worked to understand and model how the eye encodes electromagnetic radiation (light). We now understand the principles of how light is transmitted through the optics of the eye and encoded by retinal photoreceptors and light-sensitive neurons. In recent years, new instrumentation has enabled scientists to measure the specific parameters of the optics and photoreceptor encoding. We implemented the principles and parameter estimates that characterize the human eye in an open-source software toolbox. This chapter describes the principles behind these tools and illustrates how to use them to compute the initial visual encoding.


Subject(s)
Retina , Retinal Cone Photoreceptor Cells , Humans , Optics and Photonics , Photoreceptor Cells, Vertebrate , Retina/physiology , Software
4.
Elife ; 112022 01 17.
Article in English | MEDLINE | ID: mdl-35037622

ABSTRACT

We developed an image-computable observer model of the initial visual encoding that operates on natural image input, based on the framework of Bayesian image reconstruction from the excitations of the retinal cone mosaic. Our model extends previous work on ideal observer analysis and evaluation of performance beyond psychophysical discrimination, takes into account the statistical regularities of the visual environment, and provides a unifying framework for answering a wide range of questions regarding the visual front end. Using the error in the reconstructions as a metric, we analyzed variations of the number of different photoreceptor types on human retina as an optimal design problem. In addition, the reconstructions allow both visualization and quantification of information loss due to physiological optics and cone mosaic sampling, and how these vary with eccentricity. Furthermore, in simulations of color deficiencies and interferometric experiments, we found that the reconstructed images provide a reasonable proxy for modeling subjects' percepts. Lastly, we used the reconstruction-based observer for the analysis of psychophysical threshold, and found notable interactions between spatial frequency and chromatic direction in the resulting spatial contrast sensitivity function. Our method is widely applicable to experiments and applications in which the initial visual encoding plays an important role.


Subject(s)
Computer Simulation , Image Processing, Computer-Assisted/methods , Retinal Cone Photoreceptor Cells/physiology , Vision, Ocular/physiology , Visual Perception/physiology , Bayes Theorem , Color Perception/physiology , Contrast Sensitivity , Humans , Photic Stimulation , Software
5.
J Vis ; 20(7): 17, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32692826

ABSTRACT

We have recently shown that the relative spatial contrast sensitivity function (CSF) of a computational observer operating on the cone mosaic photopigment excitations of a stationary retina has the same shape as human subjects. Absolute human sensitivity, however, is 5- to 10-fold lower than the computational observer. Here we model how additional known features of early vision affect the CSF: fixational eye movements and the conversion of cone photopigment excitations to cone photocurrents (phototransduction). For a computational observer that uses a linear classifier applied to the responses of a stimulus-matched linear filter, fixational eye movements substantially change the shape of the CSF by reducing sensitivity above 10 c/deg. For a translation-invariant computational observer that operates on the squared response of a quadrature-pair of linear filters, the CSF shape is little changed by eye movements, but there is a two fold reduction in sensitivity. Phototransduction dynamics introduce an additional two fold sensitivity decrease. Hence, the combined effects of fixational eye movements and phototransduction bring the absolute CSF of the translation-invariant computational observer to within a factor of 1 to 2 of the human CSF. We note that the human CSF depends on processing of the retinal representation by many thalamo-cortical neurons, which are individually quite noisy. Our modeling suggests that the net effect of post-retinal noise on contrast-detection performance, when considered at the neural population and behavioral level, is quite small: The inference mechanisms that determine the CSF, presumably in cortex, make efficient use of the information carried by the cone photocurrents of the fixating eye.


Subject(s)
Computer Simulation , Contrast Sensitivity/physiology , Eye Movements/physiology , Fixation, Ocular/physiology , Retinal Cone Photoreceptor Cells/physiology , Spatial Processing/physiology , Vision, Ocular/physiology , Humans , Retina/physiology , Software
6.
J Vis ; 19(12): 23, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31658357

ABSTRACT

Scientists and engineers have created computations and made measurements that characterize the first steps of seeing. ISETBio software integrates such computations and data into an open-source software package. The initial ISETBio implementations modeled image formation (physiological optics) for planar or distant scenes. The ISET3d software described here extends that implementation, simulating image formation for three-dimensional scenes. The software system relies on a quantitative computer graphics program that ray traces the scene radiance through the physiological optics to the retinal irradiance. We describe and validate the implementation for several model eyes. Then, we use the software to quantify the impact of several physiological optics parameters on three-dimensional image formation. ISET3d is integrated with ISETBio, making it straightforward to convert the retinal irradiance into cone excitations. These methods help the user compute the predictions of optics models for a wide range of spatially rich three-dimensional scenes. They can also be used to evaluate the impact of nearby visual occlusion, the information available to binocular vision, or the retinal images expected from near-field and augmented reality displays.


Subject(s)
Computer Graphics , Computer Simulation , Imaging, Three-Dimensional/methods , Optics and Photonics , Retina/physiology , Retinal Cone Photoreceptor Cells/physiology , Vision, Ocular , Color , Equipment Design , Humans , Lens, Crystalline/physiology , Light , Software , Young Adult
7.
J Vis ; 19(7): 11, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31323097

ABSTRACT

The spectral properties of the ambient illumination provide useful information about time of day and weather. We study the perceptual representation of illumination by analyzing measurements of how well people discriminate between illuminations across scene configurations. More specifically, we compare human performance to a computational-observer analysis that evaluates the information available in the isomerizations of cone photopigment in a model human photoreceptor mosaic. The performance of such an observer is limited by the Poisson variability of the number of isomerizations in each cone. The overall level of Poisson-limited computational-observer sensitivity exceeded that of human observers. This was modeled by increasing the amount of noise in the number of isomerizations of each cone. The additional noise brought the overall level of performance of the computational observer into the same range as that of human observers, allowing us to compare the pattern of sensitivity across stimulus manipulations. Key patterns of human performance were not accounted for by the computational observer. In particular, neither the elevation of illumination-discrimination thresholds for illuminant changes in a blue color direction (when thresholds are expressed in CIELUV ΔE units), nor the effects of varying the ensemble of surfaces in the scenes being viewed, could be accounted for by variation in the information available in the cone isomerizations.


Subject(s)
Discrimination, Psychological/physiology , Lighting , Visual Perception/physiology , Color , Color Perception/physiology , Contrast Sensitivity , Fixation, Ocular , Humans , Observer Variation , Photic Stimulation , Retinal Cone Photoreceptor Cells/physiology , Sensory Thresholds/physiology , Software
8.
PLoS Comput Biol ; 15(4): e1006950, 2019 04.
Article in English | MEDLINE | ID: mdl-30978187

ABSTRACT

Object perception is inherently multidimensional: information about color, material, texture and shape all guide how we interact with objects. We developed a paradigm that quantifies how two object properties (color and material) combine in object selection. On each experimental trial, observers viewed three blob-shaped objects-the target and two tests-and selected the test that was more similar to the target. Across trials, the target object was fixed, while the tests varied in color (across 7 levels) and material (also 7 levels, yielding 49 possible stimuli). We used an adaptive trial selection procedure (Quest+) to present, on each trial, the stimulus test pair that is most informative of underlying processes that drive selection. We present a novel computational model that allows us to describe observers' selection data in terms of (1) the underlying perceptual stimulus representation and (2) a color-material weight, which quantifies the relative importance of color vs. material in selection. We document large individual differences in the color-material weight across the 12 observers we tested. Furthermore, our analyses reveal limits on how precisely selection data simultaneously constrain perceptual representations and the color-material weight. These limits should guide future efforts towards understanding the multidimensional nature of object perception.


Subject(s)
Color Perception/physiology , Form Perception/physiology , Models, Biological , Adult , Computational Biology , Female , Humans , Male , Middle Aged , Photic Stimulation , Young Adult
9.
J Vis ; 19(4): 8, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30943530

ABSTRACT

We present a computational-observer model of the human spatial contrast-sensitivity function based on the Image Systems Engineering Toolbox for Biology (ISETBio) simulation framework. We demonstrate that ISETBio-derived contrast-sensitivity functions agree well with ones derived using traditional ideal-observer approaches, when the mosaic, optics, and inference engine are matched. Further simulations extend earlier work by considering more realistic cone mosaics, more recent measurements of human physiological optics, and the effect of varying the inference engine used to link visual representations to psychophysical performance. Relative to earlier calculations, our simulations show that the spatial structure of realistic cone mosaics reduces the upper bounds on performance at low spatial frequencies, whereas realistic optics derived from modern wave-front measurements lead to increased upper bounds at high spatial frequencies. Finally, we demonstrate that the type of inference engine used has a substantial effect on the absolute level of predicted performance. Indeed, the performance gap between an ideal observer with exact knowledge of the relevant signals and human observers is greatly reduced when the inference engine has to learn aspects of the visual task. ISETBio-derived estimates of stimulus representations at various stages along the visual pathway provide a powerful tool for computing the limits of human performance.


Subject(s)
Computer Simulation , Contrast Sensitivity/physiology , Retinal Cone Photoreceptor Cells/cytology , Humans , Psychophysics , Retinal Cone Photoreceptor Cells/physiology , Visual Pathways/physiology
10.
J Neural Eng ; 16(2): 025003, 2019 04.
Article in English | MEDLINE | ID: mdl-30523985

ABSTRACT

OBJECTIVE: The nature of artificial vision with a retinal prosthesis, and the degree to which the brain can adapt to the unnatural input from such a device, are poorly understood. Therefore, the development of current and future devices may be aided by theory and simulations that help to infer and understand what prosthesis patients see. APPROACH: A biologically-informed, extensible computational framework is presented here to predict visual perception and the potential effect of learning with a subretinal prosthesis. The framework relies on optimal linear reconstruction of the stimulus from retinal responses to infer the visual information available to the patient. A simulation of the physiological optics of the eye and light responses of the major retinal neurons was used to calculate the optimal linear transformation for reconstructing natural images from retinal activity. The result was then used to reconstruct the visual stimulus during the artificial activation expected from a subretinal prosthesis in a degenerated retina, as a proxy for inferred visual perception. MAIN RESULTS: Several simple observations reveal the potential utility of such a simulation framework. The inferred perception obtained with prosthesis activation was substantially degraded compared to the inferred perception obtained with normal retinal responses, as expected given the limited resolution and lack of cell type specificity of the prosthesis. Consistent with clinical findings and the importance of cell type specificity, reconstruction using only ON cells, and not OFF cells, was substantially more accurate. Finally, when reconstruction was re-optimized for prosthesis stimulation, simulating the greatest potential for learning by the patient, the accuracy of inferred perception was much closer to that of healthy vision. SIGNIFICANCE: The reconstruction approach thus provides a more complete method for exploring the potential for treating blindness with retinal prostheses than has been available previously. It may also be useful for interpreting patient data in clinical trials, and for improving prosthesis design.


Subject(s)
Learning/physiology , Retina , Visual Perception/physiology , Visual Prosthesis , Algorithms , Blindness/rehabilitation , Computer Simulation , Humans , Photic Stimulation , Prosthesis Design , Prosthesis Implantation , Reference Values , Retina/cytology , Retinal Degeneration , Retinal Diseases/physiopathology
11.
J Vis ; 18(13): 19, 2018 12 03.
Article in English | MEDLINE | ID: mdl-30593061

ABSTRACT

The human visual system supports stable percepts of object color even though the light that reflects from object surfaces varies significantly with the scene illumination. To understand the computations that support stable color perception, we study how estimating a target object's luminous reflectance factor (LRF; a measure of the light reflected from the object under a standard illuminant) depends on variation in key properties of naturalistic scenes. Specifically, we study how variation in target object reflectance, illumination spectra, and the reflectance of background objects in a scene impact estimation of a target object's LRF. To do this, we applied supervised statistical learning methods to the simulated excitations of human cone photoreceptors, obtained from labeled naturalistic images. The naturalistic images were rendered with computer graphics. The illumination spectra of the light sources and the reflectance spectra of the surfaces in the scene were generated using statistical models of natural spectral variation. Optimally decoding target object LRF from the responses of a small learned set of task-specific linear receptive fields that operate on a contrast representation of the cone excitations yields estimates that are within 13% of the correct LRF. Our work provides a framework for evaluating how different sources of scene variability limit performance on luminance constancy.


Subject(s)
Color Perception/physiology , Light , Lighting , Pattern Recognition, Visual/physiology , Retinal Cone Photoreceptor Cells/physiology , Female , Humans , Male , Models, Statistical , Photic Stimulation
12.
J Vis ; 18(8): 6, 2018 08 01.
Article in English | MEDLINE | ID: mdl-30105385

ABSTRACT

Psychophysical inferences about the neural mechanisms supporting spatial vision can be undermined by uncertainties introduced by optical aberrations and fixational eye movements, particularly in fovea where the neuronal grain of the visual system is fine. We examined the effect of these preneural factors on photopic spatial summation in the human fovea using a custom adaptive optics scanning light ophthalmoscope that provided control over optical aberrations and retinal stimulus motion. Consistent with previous results, Ricco's area of complete summation encompassed multiple photoreceptors when measured with ordinary amounts of ocular aberrations and retinal stimulus motion. When both factors were minimized experimentally, summation areas were essentially unchanged, suggesting that foveal spatial summation is limited by postreceptoral neural pooling. We compared our behavioral data to predictions generated with a physiologically-inspired front-end model of the visual system, and were able to capture the shape of the summation curves obtained with and without pre-retinal factors using a single postreceptoral summing filter of fixed spatial extent. Given our data and modeling, neurons in the magnocellular visual pathway, such as parasol ganglion cells, provide a candidate neural correlate of Ricco's area in the central fovea.


Subject(s)
Eye Movements/physiology , Fixation, Ocular/physiology , Fovea Centralis/physiology , Spatial Processing/physiology , Visual Pathways/physiology , Adult , Female , Humans , Male , Middle Aged , Psychophysics/methods , Sensory Thresholds/physiology
13.
Interface Focus ; 8(4): 20180012, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-29951192

ABSTRACT

Perceived object colour and material help us to select and interact with objects. Because there is no simple mapping between the pattern of an object's image on the retina and its physical reflectance, our perceptions of colour and material are the result of sophisticated visual computations. A long-standing goal in vision science is to describe how these computations work, particularly as they act to stabilize perceived colour and material against variation in scene factors extrinsic to object surface properties, such as the illumination. If we take seriously the notion that perceived colour and material are useful because they help guide behaviour in natural tasks, then we need experiments that measure and models that describe how they are used in such tasks. To this end, we have developed selection-based methods and accompanying perceptual models for studying perceived object colour and material. This focused review highlights key aspects of our work. It includes a discussion of future directions and challenges, as well as an outline of a computational observer model that incorporates early, known, stages of visual processing and that clarifies how early vision shapes selection performance.

14.
J Vis ; 16(11): 2, 2016 09 01.
Article in English | MEDLINE | ID: mdl-28558392

ABSTRACT

Characterizing humans' ability to discriminate changes in illumination provides information about the visual system's representation of the distal stimulus. We have previously shown that humans are able to discriminate illumination changes and that sensitivity to such changes depends on their chromatic direction. Probing illumination discrimination further would be facilitated by the use of computer-graphics simulations, which would, in practice, enable a wider range of stimulus manipulations. There is no a priori guarantee, however, that results obtained with simulated scenes generalize to real illuminated scenes. To investigate this question, we measured illumination discrimination in real and simulated scenes that were well-matched in mean chromaticity and scene geometry. Illumination discrimination thresholds were essentially identical for the two stimulus types. As in our previous work, these thresholds varied with illumination change direction. We exploited the flexibility offered by the use of graphics simulations to investigate whether the differences across direction are preserved when the surfaces in the scene are varied. We show that varying the scene's surface ensemble in a manner that also changes mean scene chromaticity modulates the relative sensitivity to illumination changes along different chromatic directions. Thus, any characterization of sensitivity to changes in illumination must be defined relative to the set of surfaces in the scene.


Subject(s)
Color Perception/physiology , Contrast Sensitivity/physiology , Lighting , Adult , Computer Graphics , Computer Simulation , Female , Humans , Male , Young Adult
15.
J Vis ; 15(13): 3, 2015.
Article in English | MEDLINE | ID: mdl-26381834

ABSTRACT

In daily life, we use color information to select objects that will best serve a particular goal (e.g., pick the best-tasting fruit or avoid spoiled food). This is challenging when judgments must be made across changes in illumination as the spectrum reflected from an object to the eye varies with the illumination. Color constancy mechanisms serve to partially stabilize object color appearance across illumination changes, but whether and to what degree constancy supports accurate cross-illumination object selection is not well understood. To get closer to understanding how constancy operates in real-life tasks, we developed a paradigm in which subjects engage in a goal-directed task for which color is instrumental. Specifically, in each trial, subjects re-created an arrangement of colored blocks (the model) across a change in illumination. By analyzing the re-creations, we were able to infer and quantify the degree of color constancy that mediated subjects' performance. In Experiments 1 and 2, we used our paradigm to characterize constancy for two different sets of block reflectances, two different illuminant changes, and two different groups of subjects. On average, constancy was good in our naturalistic task, but it varied considerably across subjects. In Experiment 3, we tested whether varying scene complexity and the validity of local contrast as a cue to the illumination change modulated constancy. Increasing complexity did not lead to improved constancy; silencing local contrast significantly reduced constancy. Our results establish a novel goal-directed task that enables us to approach color constancy as it emerges in real life.


Subject(s)
Color Perception/physiology , Color Vision/physiology , Light , Pattern Recognition, Visual/physiology , Adolescent , Adult , Choice Behavior , Female , Humans , Middle Aged , Young Adult
16.
J Vis ; 15(6): 13, 2015.
Article in English | MEDLINE | ID: mdl-26024460

ABSTRACT

We rely on color to select objects as the targets of our actions (e.g., the freshest fish, the ripest fruit). To be useful for selection, color must provide accurate guidance about object identity across changes in illumination. Although the visual system partially stabilizes object color appearance across illumination changes, how such color constancy supports object selection is not understood. To study how constancy operates in real-life tasks, we developed a novel paradigm in which subjects selected which of two test objects presented under a test illumination appeared closer in color to a target object presented under a standard illumination. From subjects' choices, we inferred a selection-based match for the target via a variant of maximum likelihood difference scaling, and used it to quantify constancy. Selection-based constancy was good when measured using naturalistic stimuli, but was dramatically reduced when the stimuli were simplified, indicating that a naturalistic stimulus context is critical for good constancy. Overall, our results suggest that color supports accurate object selection across illumination changes when both stimuli and task match how color is used in real life. We compared our selection-based constancy results with data obtained using a classic asymmetric matching task and found that the adjustment-based matches predicted selection well for our stimuli and instructions, indicating that the appearance literature provides useful guidance for the emerging study of constancy in natural tasks.


Subject(s)
Color Perception/physiology , Color Vision/physiology , Lighting , Choice Behavior , Cues , Female , Humans , Male , Photic Stimulation , Young Adult
17.
J Vis ; 14(2)2014 Feb 07.
Article in English | MEDLINE | ID: mdl-24511145

ABSTRACT

RenderToolbox3 provides MATLAB utilities and prescribes a workflow that should be useful to researchers who want to employ graphics in the study of vision and perhaps in other endeavors as well. In particular, RenderToolbox3 facilitates rendering scene families in which various scene attributes and renderer behaviors are manipulated parametrically, enables spectral specification of object reflectance and illuminant spectra, enables the use of physically based material specifications, helps validate renderer output, and converts renderer output to physical units of radiance. This paper describes the design and functionality of the toolbox and discusses several examples that demonstrate its use. We have designed RenderToolbox3 to be portable across computer hardware and operating systems and to be free and open source (except for MATLAB itself). RenderToolbox3 is available at https://github.com/DavidBrainard/RenderToolbox3.


Subject(s)
Cognition/physiology , Color Perception/physiology , Computers , Cues , Pattern Recognition, Visual/physiology , Perceptual Masking/physiology , Software , Algorithms , Humans , Photic Stimulation/methods
18.
J Neurosci Methods ; 180(2): 195-207, 2009 Jun 15.
Article in English | MEDLINE | ID: mdl-19464512

ABSTRACT

A significant barrier to the development of a retinal prosthesis that is capable of inducing spatially patterned visual percepts has been a lack of adequate models to assess the efficacy of various electrical stimulation algorithms. Toward this end, we developed an in vivo, normally sighted animal model that is based on primary visual cortex neurophysiological recordings of spiking and local-field potential activity. Here, we describe this model, and we present results related to the spatial spread and location of the induced retinal activation. Our findings demonstrate that a single epiretinally delivered electric pulse induces two temporally separated cortical responses whose latencies are similar to the previously reported double responses of retinal ganglion cells (RGCs). Furthermore, our model indicates that the short latency response originates in widespread retinal locations that extend well beyond the location of the activated electrodes, whereas the long latency response has a more focal origin which corresponds to the location of the activated electrodes. The present work demonstrates the applicability of our model for the evaluation and development of electrical retinal stimulation methods using cortical recordings.


Subject(s)
Action Potentials/physiology , Electrophysiology/methods , Models, Animal , Prostheses and Implants , Retina/physiology , Visual Cortex/physiology , Algorithms , Animals , Cats , Electric Stimulation/instrumentation , Electric Stimulation/methods , Electrodes , Electrophysiology/instrumentation , Neural Conduction/physiology , Neurophysiology/instrumentation , Neurophysiology/methods , Phosphenes/physiology , Reaction Time/physiology , Retina/cytology , Retinal Ganglion Cells/physiology , Time Factors , Treatment Outcome , Visual Cortex/cytology , Visual Pathways/physiology
19.
J Neural Eng ; 2(1): S74-90, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15876658

ABSTRACT

We considered the problem of determining how the retinal network may interact with electrical epiretinal stimulation in shaping the spike trains of ON and OFF ganglion cells, and thus the synaptic input to first-stage cortical neurons. To do so, we developed a biophysical model of the retinal network with nine stacked neuronal mosaics. Here, we describe the model's behavior under (i) electrical stimulation of a retina with complete cone photoreceptor loss, but an otherwise intact circuitry and (ii) electrical stimulation of a fully-functional retina. Our results show that electrical stimulation alone results in indiscriminate excitation of ON and OFF ganglion cells and a patchy input to the cortex with islands of excitation among regions of no net excitation. Activation of the retinal network biases the excitation of ON relative to OFF ganglion cells, and in addition, gradually interpolates and focuses the initial, patchy synaptic input to the cortex. As stimulation level increases, the cortical input spreads beyond the area occupied by the electrode contact. Further, at very strong stimulation levels, ganglion cell responses begin to saturate, resulting in a significant distortion in the spatial profile of the cortical input. These findings occur in both the normal and the degenerated retina simulations, but the normal retina exhibits a tighter spatiotemporal response. The complex spatiotemporal dynamics of the prosthetic input to the cortex that are revealed by our model should be addressed by prosthetic image encoders and by studies that simulate prosthetic vision.


Subject(s)
Action Potentials/physiology , Electric Stimulation Therapy/methods , Electric Stimulation/methods , Models, Neurological , Nerve Net/physiology , Photoreceptor Cells/physiology , Visual Cortex/physiology , Visual Perception/physiology , Animals , Computer Simulation , Humans , Photic Stimulation/methods , Prostheses and Implants , Retinal Degeneration/physiopathology , Retinal Ganglion Cells/physiology
20.
J Opt Soc Am A Opt Image Sci Vis ; 20(9): 1694-713, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12968643

ABSTRACT

The spatiochromatic receptive-field structure of neurons in the macaque visual system has been studied almost exclusively with stimuli based on the human foveal cone fundamentals of Smith and Pokorny [Vision Res. 15, 161 (1975)] and generated on cathode ray tube displays. In the current study the artifacts evoked by cone-isolating, spatially structured stimuli due to variations in the eye's preretinal absorption characteristics and axial chromatic aberration are quantified. In addition, the luminance artifacts evoked by nominally isoluminant sinusoidal grating stimuli due to the same factors are quantified. The results indicate that the spatiochromatic stimuli commonly employed to map receptive fields of neurons at eccentricities > 10 deg are especially prone to artifacts and that these artifacts are maximal for the high-contrast S-cone-isolating stimuli that are often used. On the basis of these simulations, a method is introduced that improves spatiochromatic receptive-field estimates by compensating for response contributions from the incompletely silenced cone mosaics during cone-isolating stimulation.


Subject(s)
Artifacts , Color Perception/physiology , Color , Light , Models, Biological , Retina/radiation effects , Absorption , Animals , Humans , Macaca , Neurons, Afferent/physiology , Photic Stimulation/methods , Retina/physiology , Retinal Cone Photoreceptor Cells/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...