Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 108(16): 162501, 2012 Apr 20.
Article in English | MEDLINE | ID: mdl-22680712

ABSTRACT

We report on the spectroscopic quadrupole moment measurement of the 7/2(1)(-) isomeric state in (16)(43)S(27) [E*=320.5(5) keV, T(1/2)=415(3) ns], using the time dependent perturbed angular distribution technique at the RIKEN RIBF facility. Our value, |Q(s)|=23(3) efm(2), is larger than that expected for a single-particle state. Shell model calculations using the modern SDPF-U interaction for this mass region reproduce remarkably well the measured |Q(s)|, and show that non-negligible correlations drive the isomeric state away from a purely spherical shape.

2.
J Phys Condens Matter ; 24(20): 205503, 2012 May 23.
Article in English | MEDLINE | ID: mdl-22538303

ABSTRACT

We present electronic band structures of transparent oxides calculated using the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. We studied the basic n-type conducting binary oxides In(2)O(3), ZnO, CdO and SnO(2) along with the p-type conducting ternary oxides delafossite CuXO(2) (X=Al, Ga, In) and spinel ZnX(2)O(4) (X=Co, Rh, Ir). The results are presented for calculated band gaps and effective electron masses. We discuss the improvements in the band gap determination using TB-mBJ compared to the standard generalized gradient approximation (GGA) in density functional theory (DFT) and also compare the electronic band structure with available results from the quasiparticle GW method. It is shown that the calculated band gaps compare well with the experimental and GW results, although the electron effective mass is generally overestimated.

3.
J Phys Condens Matter ; 22(38): 385602, 2010 Sep 29.
Article in English | MEDLINE | ID: mdl-21386555

ABSTRACT

Applying time differential perturbed angular correlation (TDPAC) spectroscopy and ab initio calculations, we have investigated possible lattice instabilities in Sr(2)RuO(4) by studying the electric quadrupole interaction of a (111)Cd probe at the Ru site. We find evidence for a dynamic lattice distortion, revealed from the observations of: (i) a rapidly fluctuating electric-field gradient (EFG) tensor showing non-Arrhenius relaxation, (ii) an anomalous temperature dependence of the quadrupole interaction frequency, and (iii) a monotonic increase of the EFG asymmetry (η) below 300 K. We argue that the observed dynamic lattice distortion is caused by strong spin fluctuations associated with the inherent magnetic instability in Sr(2)RuO(4).

4.
Phys Rev Lett ; 102(6): 065502, 2009 Feb 13.
Article in English | MEDLINE | ID: mdl-19257601

ABSTRACT

We report on the lattice location of ion implanted Fe, Cu, and Ag impurities in germanium from a combined approach of emission channeling experiments and ab initio total energy calculations. Following common expectation, a fraction of these transition metals (TMs) was found on the substitutional Ge position. Less expected is the observation of a second fraction on the sixfold coordinated bond-centered site. Ab initio calculated heats of formation suggest this is the result of the trapping of a vacancy by a substitutional TM impurity, spontaneously forming an impurity-vacancy complex in the split-vacancy configuration. We also present an approach to displace the TM impurities from the electrically active substitutional site to the bond-centered site.

5.
Phys Rev Lett ; 85(9): 1978-81, 2000 Aug 28.
Article in English | MEDLINE | ID: mdl-10970662

ABSTRACT

We have observed large 4d moments on isolated Mo atoms at substitutional and octahedral interstitial lattice sites in Yb metal, showing Curie-Weiss local susceptibility and a Korringa-like spin relaxation rate. The interstitial Mo atoms, despite strong hybridization with the Yb neighbors, show rather small Kondo temperature ( T(K)

SELECTION OF CITATIONS
SEARCH DETAIL
...