Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Physiol ; 599(7): 1977-1996, 2021 04.
Article in English | MEDLINE | ID: mdl-33586133

ABSTRACT

KEY POINTS: The human brain is particularly vulnerable to heat stress; this manifests as impaired cognition, orthostatic tolerance, work capacity and eventually, brain death. The brain's limitation in the heat is often ascribed to inadequate cerebral blood flow (CBF), but elevated intracranial pressure is commonly observed in mammalian models of heat stroke and can on its own cause functional impairment. The CBF response to incremental heat strain was dependent on the mode of heating, decreasing by 30% when exposed passively to hot, humid air (sauna), while remaining unchanged or increasing with passive hot-water immersion (spa) and exercising in a hot environment. Non-invasive intracranial pressure estimates (nICP) were increased universally by 18% at volitional thermal tolerance across all modes of heat stress, and therefore may play a contributing role in eliciting thermal tolerance. The sauna, more so than the spa or exercise, poses a greater challenge to the brain under mild to severe heating due to lower blood flow but similarly increased nICP. ABSTRACT: The human brain is particularly vulnerable to heat stress; this manifests as impaired cognitive function, orthostatic tolerance, work capacity, and eventually, brain death. This vulnerability is often ascribed to inadequate cerebral blood flow (CBF); however, elevated intracranial pressure (ICP) is also observed in mammalian models of heat stroke. We investigated the changes in CBF with incremental heat strain under three fundamentally different modes of heating, and assessed whether heating per se increased ICP. Fourteen fit participants (seven female) were heated to thermal tolerance or 40°C core temperature (Tc ; oesophageal) via passive hot-water immersion (spa), passive hot, humid air exposure (sauna), cycling exercise, and cycling exercise with CO2 inhalation to prevent heat-induced hypocapnia. CBF was measured with duplex ultrasound at each 0.5°C increment in Tc and ICP was estimated non-invasively (nICP) from optic nerve sheath diameter at thermal tolerance. At thermal tolerance, CBF was decreased by 30% in the sauna (P < 0.001), but was unchanged in the spa or with exercise (P ≥ 0.140). CBF increased by 17% when end-tidal PCO2 was clamped at eupnoeic pressure (P < 0.001). On the contrary, nICP increased universally by 18% with all modes of heating (P < 0.001). The maximum Tc was achieved with passive heating, and preventing hypocapnia during exercise did not improve exercise or thermal tolerance (P ≥ 0.146). Therefore, the regulation of CBF is dramatically different depending on the mode and dose of heating, whereas nICP responses are not. The sauna, more so than the spa or exercise, poses a greater challenge to the brain under equivalent heat strain.


Subject(s)
Heat Stress Disorders , Heating , Blood Pressure , Cerebrovascular Circulation , Exercise , Female , Humans , Intracranial Pressure
2.
Med Sci Sports Exerc ; 51(6): 1099-1105, 2019 06.
Article in English | MEDLINE | ID: mdl-30640284

ABSTRACT

Type 2 diabetes is associated with reduced left ventricular reserve. It is unclear whether exercise training improves left ventricular function in people with type 2 diabetes. PURPOSE: This study aimed to determine whether 3 months of high-intensity interval training (HIIT) improves left ventricular function during exercise in adults with type 2 diabetes. METHODS: Participants performed a V˙O2peak test and received a DXA scan and total blood volume measurement at baseline. Left ventricular end-diastolic volume (LVEDV), left ventricular end-systolic volume (LVESV), and left ventricular stroke volume (LVSV) were then measured at rest and during low- and moderate-intensity semirecumbent exercise in adults with type 2 diabetes before and after 3 months of HIIT (n = 11) or no training (control) (n = 5). The effects of HIIT were determined using repeated-measures ANOVA. RESULTS: HIIT increased V˙O2peak by approximately 15% (P < 0.002) but did not change body composition or total blood volume. LVESV decreased and LVEDV and LVSV increased from rest to moderate-intensity exercise in both groups at baseline (all P < 0.01). Three months of HIIT increased LVEDV (P = 0.008) and LVSV (P = 0.02) at all conditions, but there was no difference in controls (all P > 0.05). HIIT augmented the reduction in LVESV from rest to moderate-intensity exercise (P < 0.04), but LVESV was unchanged in controls. Increased LVEDV explained 51% of the change in LVSV after HIIT intervention. Mitral inflow parameters and mitral annular velocities were unaffected by HIIT (all P > 0.05). CONCLUSIONS: HIIT training increased the LVSV response to exercise in adults with type 2 diabetes. These data suggest that HIIT can improve LV filling and emptying during exercise and reverse early cardiac consequences of type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2/physiopathology , High-Intensity Interval Training , Ventricular Function, Left/physiology , Adult , Blood Volume/physiology , Diabetes Mellitus, Type 2/diagnostic imaging , Echocardiography , Exercise Test , Female , Humans , Male , Middle Aged , Oxygen Consumption , Patient Compliance , Stroke Volume/physiology
3.
Cardiovasc Diabetol ; 16(1): 160, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29258502

ABSTRACT

BACKGROUND: Attenuated increases in ventricular stroke volume during exercise are common in type 2 diabetes and contribute to reduced aerobic capacity. The purpose of this study was to determine whether impaired ventricular filling or reduced systolic ejection were responsible for the attenuated stroke volume reserve in people with uncomplicated type 2 diabetes. METHODS: Peak aerobic capacity and total blood volume were measured in 17 people with diabetes and 16 non-diabetic controls with no evidence of cardiovascular disease. Left ventricular volumes and other systolic and diastolic functional parameters were measured with echocardiography at rest and during semi-recumbent cycle ergometry at 40 and 60% of maximal aerobic power and compared between groups. RESULTS: People with diabetes had reduced peak aerobic capacity and heart rate reserve, and worked at lower workloads than non-diabetic controls. Cardiac output, stroke volume and ejection fraction were not different at rest, but increased less in people with diabetes during exercise. Left ventricular end systolic volume was not different between groups in any condition but end diastolic volume, although not different at rest, was smaller in people with diabetes during exercise. Total blood volume was not different between the groups, and was only moderately associated with left ventricular volumes. CONCLUSIONS: People with type 2 diabetes exhibit an attenuated increase in stroke volume during exercise attributed to an inability to maintain/increase left ventricular filling volumes at higher heart rates. This study is the first to determine the role of filling in the blunted cardiac reserve in adults with type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2/complications , Diabetic Cardiomyopathies/etiology , Exercise Tolerance , Stroke Volume , Ventricular Dysfunction, Left/etiology , Ventricular Function, Left , Adult , Case-Control Studies , Diabetes Mellitus, Type 2/diagnosis , Diabetic Cardiomyopathies/diagnostic imaging , Diabetic Cardiomyopathies/physiopathology , Echocardiography, Doppler , Exercise Test , Female , Heart Rate , Humans , Male , Middle Aged , Oxygen Consumption , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/physiopathology
5.
Musculoskelet Sci Pract ; 29: 120-131, 2017 06.
Article in English | MEDLINE | ID: mdl-28399479

ABSTRACT

The aim of this meta-analysis was to determine the effectiveness of spinal manipulation in influencing various biochemical markers in healthy and or symptomatic population. Electronic databases (n = 10) were searched (from inception till September 2016) and eight trials (325 participants) that met the inclusion criteria were included in the meta-analysis. Two authors independently extracted and assessed the risk of bias in included studies. Standardised mean differences for outcome measures were used to calculate effect sizes. The Grading of Recommendations, Assessment, Development and Evaluation (GRADE) tool was used for assessing the quality of the body of evidence for each outcome of interest. There was moderate quality evidence that spinal manipulation influenced biochemical markers. There was moderate quality evidence of significant difference that spinal manipulation is better (SMD -0.46, 95% CI - 0.93 to 0) than control in eliciting changes in cortisol levels immediately after intervention. There was also a low quality evidence that spinal manipulation is better than control at post-intervention in increasing substance-P (SMD -0.48,95%CI-0.87 to -0.1), neurotensin (SMD -1.8,95%CI-2.56 to -1.04) and oxytocin levels (SMD -2.61,95%CI-3.5to-1.72). However, low quality evidence indicated that spinal manipulation did not influence epinephrine (SMD 0.1,95%CI- 0.56to0.75) or nor-epinephrine levels (SMD -0.06,95%CI-0.71to0.6). The current review found that spinal manipulation can increase substance-p, neurotensin, oxytocin and interleukin levels and may influence cortisol levels post-intervention. However, future trials targeting symptomatic populations are required to understand the clinical importance of such changes.


Subject(s)
Biomarkers , Manipulation, Spinal/methods , Spinal Injuries/therapy , Adult , Female , Humans , Male , Middle Aged
6.
Chest ; 148(1): 219-225, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25501858

ABSTRACT

BACKGROUND: The hypoxic ventilatory response (HVR) at sea level (SL) is moderately predictive of the change in pulmonary artery systolic pressure (PASP) to acute normobaric hypoxia. However, because of progressive changes in the chemoreflex control of breathing and acid-base balance at high altitude (HA), HVR at SL may not predict PASP at HA. We hypothesized that resting oxygen saturation as measured by pulse oximetry (Spo2) at HA would correlate better than HVR at SL with PASP at HA. METHODS: In 20 participants at SL, we measured normobaric, isocapnic HVR (L/min · -%Spo2⁻¹) and resting PASP using echocardiography. Both resting Spo2 and PASP measures were repeated on day 2 (n = 10), days 4 to 8 (n = 12), and 2 to 3 weeks (n = 8) after arrival at 5,050 m. These data were also collected at 5,050 m in life-long HA residents (ie, Sherpa [n = 21]). RESULTS: Compared with SL, Spo2 decreased from 98.6% to 80.5% (P < .001), whereas PASP increased from 21.7 to 34.0 mm Hg (P < .001) after 2 to 3 weeks at 5,050 m. Isocapnic HVR at SL was not related to Spo2 or PASP at any time point at 5,050 m (all P > .05). Sherpa had lower PASP (P < .01) than lowlanders on days 4 to 8 despite similar Spo2. Upon correction for hematocrit, Sherpa PASP was not different from lowlanders at SL but was lower than lowlanders at all HA time points. At 5,050 m, although Spo2 was not related to PASP in lowlanders at any point (all R² ≤ 0.05, P > .50), there was a weak relationship in the Sherpa (R² = 0.16, P = .07). CONCLUSIONS: We conclude that neither HVR at SL nor resting Spo2 at HA correlates with elevations in PASP at HA.


Subject(s)
Acclimatization/physiology , Altitude , Arterial Pressure/physiology , Chemoreceptor Cells/physiology , Hypercapnia/physiopathology , Hypoxia/physiopathology , Adult , Baroreflex/physiology , Female , Humans , Hypercapnia/etiology , Hypoxia/etiology , Male , Oximetry , Oxygen/blood , Pulmonary Artery/physiopathology , Vascular Resistance/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...