Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Differ ; 23(7): 1140-51, 2016 07.
Article in English | MEDLINE | ID: mdl-26742431

ABSTRACT

Mitophagy is critical for cell homeostasis. Externalization of the inner mitochondrial membrane phospholipid, cardiolipin (CL), to the surface of the outer mitochondrial membrane (OMM) was identified as a mitophageal signal recognized by the microtubule-associated protein 1 light chain 3. However, the CL-translocating machinery remains unknown. Here we demonstrate that a hexameric intermembrane space protein, NDPK-D (or NM23-H4), binds CL and facilitates its redistribution to the OMM. We found that mitophagy induced by a protonophoric uncoupler, carbonyl cyanide m-chlorophenylhydrazone (CCCP), caused externalization of CL to the surface of mitochondria in murine lung epithelial MLE-12 cells and human cervical adenocarcinoma HeLa cells. RNAi knockdown of endogenous NDPK-D decreased CCCP-induced CL externalization and mitochondrial degradation. A R90D NDPK-D mutant that does not bind CL was inactive in promoting mitophagy. Similarly, rotenone and 6-hydroxydopamine triggered mitophagy in SH-SY5Y cells was also suppressed by knocking down of NDPK-D. In situ proximity ligation assay (PLA) showed that mitophagy-inducing CL-transfer activity of NDPK-D is closely associated with the dynamin-like GTPase OPA1, implicating fission-fusion dynamics in mitophagy regulation.


Subject(s)
Cardiolipins/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mitophagy , Nucleoside Diphosphate Kinase D/metabolism , Animals , Autophagy/drug effects , Carbonyl Cyanide m-Chlorophenyl Hydrazone/toxicity , Cardiolipins/analysis , Cell Line , GTP Phosphohydrolases/metabolism , HeLa Cells , Humans , Lysosomes/metabolism , Lysosomes/pathology , Mice , Microtubule-Associated Proteins/metabolism , Mitochondria/pathology , Mitophagy/drug effects , Mutagenesis, Site-Directed , Nucleoside Diphosphate Kinase D/antagonists & inhibitors , Nucleoside Diphosphate Kinase D/genetics , Oxidopamine/pharmacology , Protein Binding , RNA Interference , Rotenone/pharmacology
2.
Cell Death Dis ; 2: e134, 2011 Mar 24.
Article in English | MEDLINE | ID: mdl-21430707

ABSTRACT

Hyperglycemia is detrimental to ß-cell viability, playing a major role in the progression of ß-cell loss in diabetes mellitus. The permeability transition pore (PTP) is a mitochondrial channel involved in cell death. Recent evidence suggests that PTP inhibitors prevent hyperglycemia-induced cell death in human endothelial cells. In this work, we have examined the involvement of PTP opening in INS-1 cell death induced by high levels of glucose or fructose. PTP regulation was studied by measuring the calcium retention capacity in permeabilized INS-1 cells and by confocal microscopy in intact INS-1 cells. Cell death was analyzed by flow cytometry. We first reported that metformin and cyclosporin A (CsA) prevented Ca²+-induced PTP opening in permeabilized and intact INS-1 cells. We then showed that incubation of INS-1 cells in the presence of 30 mM glucose or 2.5 mM fructose induced PTP opening and led to cell death. As both metformin and CsA prevented glucose- and fructose- induced PTP opening, and hampered glucose- and fructose- induced cell death, we conclude that PTP opening is involved in high glucose- and high fructose- induced INS-1 cell death. We therefore suggest that preventing PTP opening might be a new approach to preserve ß-cell viability.


Subject(s)
Cyclosporine/pharmacology , Fructose/toxicity , Glucose/toxicity , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/metabolism , Metformin/pharmacology , Mitochondria/metabolism , Protective Agents/pharmacology , Animals , Apoptosis/drug effects , Biological Transport/drug effects , Calcium/metabolism , Cell Death/drug effects , Cell Line , Cell Survival/drug effects , Fructose/metabolism , Glucose/metabolism , Insulin-Secreting Cells/drug effects , Permeability/drug effects , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...