Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Cell Chem Biol ; 26(11): 1559-1572.e9, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31543462

ABSTRACT

Iron overload disorders are characterized by the body's inability to regulate iron absorption and its storage which can lead to organ failures. Accumulated evidence has revealed that hepcidin, the master regulator of iron homeostasis, is negatively modulated by TMPRSS6 (matriptase-2), a liver-specific type II transmembrane serine protease (TTSP). Here, we report that treatment with a peptidomimetic inhibitor affecting TMPRSS6 activity increases hepcidin production in hepatic cells. Moreover, similar effects were observed when using non-peptidic inhibitors obtained through optimization of hits from high-throughput screening. Using HepG2 cells and human primary hepatocytes, we show that TMPRSS6 inhibitors block TMPRSS6-dependent hemojuvelin cleavage and increase HAMP expression and levels of secreted hepcidin.


Subject(s)
Drug Evaluation, Preclinical , Hepcidins/metabolism , Membrane Proteins/antagonists & inhibitors , Serine Proteinase Inhibitors/chemistry , Benzothiazoles/chemistry , Binding Sites , Catalytic Domain , Cell Survival/drug effects , GPI-Linked Proteins/metabolism , Hemochromatosis Protein/metabolism , Hep G2 Cells , Hepatocytes/cytology , Hepatocytes/metabolism , High-Throughput Screening Assays , Humans , Iron/metabolism , Membrane Proteins/metabolism , Molecular Dynamics Simulation , Peptidomimetics , Proteolysis/drug effects , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors/metabolism , Serine Proteinase Inhibitors/pharmacology , Up-Regulation/drug effects
3.
J Med Chem ; 62(4): 2154-2171, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30689376

ABSTRACT

Abelson kinase (c-Abl) is a ubiquitously expressed, nonreceptor tyrosine kinase which plays a key role in cell differentiation and survival. It was hypothesized that transient activation of c-Abl kinase via displacement of the N-terminal autoinhibitory "myristoyl latch", may lead to an increased hematopoietic stem cell differentiation. This would increase the numbers of circulating neutrophils and so be an effective treatment for chemotherapy-induced neutropenia. This paper describes the discovery and optimization of a thiazole series of novel small molecule c-Abl activators, initially identified by a high throughput screening. Subsequently, a scaffold-hop, which exploited the improved physicochemical properties of a dihydropyrazole analogue, identified through fragment screening, delivered potent, soluble, cell-active c-Abl activators, which demonstrated the intracellular activation of c-Abl in vivo.


Subject(s)
Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-abl/antagonists & inhibitors , Pyrazoles/pharmacology , Thiazoles/pharmacology , Animals , Binding Sites , Drug Discovery , High-Throughput Screening Assays , Humans , Mice , Molecular Structure , Protein Binding , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Proto-Oncogene Proteins c-abl/chemistry , Proto-Oncogene Proteins c-abl/metabolism , Pyrazoles/chemistry , Pyrazoles/metabolism , Structure-Activity Relationship , Thiazoles/chemistry , Thiazoles/metabolism
4.
J Comput Aided Mol Des ; 28(2): 75-87, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24573412

ABSTRACT

c-Abl kinase is maintained in its normal inactive state in the cell through an assembled, compact conformation. We describe two chemical series that bind to the myristoyl site of the c-Abl kinase domain and stimulate c-Abl activation. We hypothesize that these molecules activate c-Abl either by blocking the C-terminal helix from adopting a bent conformation that is critical for the formation of the autoinhibited conformation or by simply providing no stabilizing interactions to the bent conformation of this helix. Structure-based molecular modeling guided the optimization of binding and activation of c-Abl of these two chemical series and led to the discovery of c-Abl activators with nanomolar potency. The small molecule c-Abl activators reported herein could be used as molecular tools to investigate the biological functions of c-Abl and therapeutic implications of its activation.


Subject(s)
Models, Molecular , Proto-Oncogene Proteins c-abl/metabolism , Small Molecule Libraries/pharmacology , Binding Sites , Crystallography, X-Ray , Hydrophobic and Hydrophilic Interactions , Protein Conformation , Protein Structure, Tertiary , Proto-Oncogene Proteins c-abl/chemistry , Pyrazoles/chemistry , Small Molecule Libraries/metabolism , Structure-Activity Relationship
5.
Chem Biol ; 18(2): 177-86, 2011 Feb 25.
Article in English | MEDLINE | ID: mdl-21338916

ABSTRACT

c-Abl kinase activity is regulated by a unique mechanism involving the formation of an autoinhibited conformation in which the N-terminal myristoyl group binds intramolecularly to the myristoyl binding site on the kinase domain and induces the bending of the αI helix that creates a docking surface for the SH2 domain. Here, we report a small-molecule c-Abl activator, DPH, that displays potent enzymatic and cellular activity in stimulating c-Abl activation. Structural analyses indicate that DPH binds to the myristoyl binding site and prevents the formation of the bent conformation of the αI helix through steric hindrance, a mode of action distinct from the previously identified allosteric c-Abl inhibitor, GNF-2, that also binds to the myristoyl binding site. DPH represents the first cell-permeable, small-molecule tool compound for c-Abl activation.


Subject(s)
Drug Discovery , Hydantoins/metabolism , Hydantoins/pharmacology , Proto-Oncogene Proteins c-abl/metabolism , Pyrazoles/metabolism , Pyrazoles/pharmacology , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Enzyme Activation/drug effects , Hep G2 Cells , Humans , Hydantoins/chemistry , Models, Molecular , Molecular Sequence Data , Permeability , Phosphorylation/drug effects , Protein Binding , Protein Structure, Tertiary , Proto-Oncogene Proteins c-abl/chemistry , Proto-Oncogene Proteins c-crk/metabolism , Pyrazoles/chemistry
6.
J Biomol Screen ; 16(1): 53-64, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20938045

ABSTRACT

A 2-step kinase assay was developed and used in a high-throughput screen (HTS) of more than 1 million compounds in an effort to identify c-Abl tyrosine kinase activators. This assay employed a 2-step phosphorylation reaction: in the first step, purified recombinant c-Abl was activated by incubating with compound in the presence of adenosine triphosphate (ATP). In the second step, the TAMRA-labeled IMAP Abltide substrate was added to allow phosphorylation of the substrate to occur. The assay was calibrated such that inactive c-Abl protein was activated by ATP alone to a degree that it not only demonstrated a measurable c-Abl activity but also maintained a robust assay window for screening. The screen resulted in 8624 primary hits with >30% response. Further analysis showed that 1024 had EC(50) <10 µM with a max % response of >50%. These hits were structurally and chemically diverse with possibly different mechanisms for activating c-Abl. In addition, selective hits were shown to be cell permeable and were able to induce c-Abl activation as determined by In-Cell Western (ICW) analysis of HEK-MSRII cells transduced with BacMam virus expressing full-length c-Abl.


Subject(s)
Enzyme Activators/pharmacology , High-Throughput Screening Assays/methods , Proto-Oncogene Proteins c-abl/agonists , Proto-Oncogene Proteins c-abl/metabolism , Adenosine Triphosphate/metabolism , Baculoviridae/genetics , Biological Assay , Drug Discovery , Genetic Vectors/genetics , HEK293 Cells , Humans , Phosphorylation , Small Molecule Libraries/pharmacology , Transfection
7.
Bioorg Med Chem ; 16(13): 6617-40, 2008 Jul 01.
Article in English | MEDLINE | ID: mdl-18511284

ABSTRACT

Antagonism of the gonadotropin releasing hormone (GnRH) receptor has shown positive clinical results in numerous reproductive tissue disorders such as endometriosis, prostate cancer and others. Traditional therapy has been limited to peptide agonists and antagonists. Recently, small molecule GnRH antagonists have emerged as potentially new treatments. This article describes the discovery of 2-phenyl-4-piperazinylbenzimidazoles as small molecule GnRH antagonists with nanomolar potency in in vitro binding and functional assays, excellent bioavailability (rat %F>70) and demonstrated oral activity in a rat model having shown significant serum leuteinizing hormone (LH) suppression.


Subject(s)
Benzimidazoles/administration & dosage , Benzimidazoles/chemistry , Piperazines/chemistry , Receptors, LHRH/antagonists & inhibitors , Administration, Oral , Animals , Benzimidazoles/chemical synthesis , Cross-Linking Reagents/chemistry , Glycolates/chemistry , Humans , Luteinizing Hormone/blood , Male , Methylation , Molecular Structure , Piperazine , Rats , Rats, Sprague-Dawley , Receptors, LHRH/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...