Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Sci ; 168(2): 315-338, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30535037

ABSTRACT

The GMO90+ project was designed to identify biomarkers of exposure or health effects in Wistar Han RCC rats exposed in their diet to 2 genetically modified plants (GMP) and assess additional information with the use of metabolomic and transcriptomic techniques. Rats were fed for 6-months with 8 maize-based diets at 33% that comprised either MON810 (11% and 33%) or NK603 grains (11% and 33% with or without glyphosate treatment) or their corresponding near-isogenic controls. Extensive chemical and targeted analyses undertaken to assess each diet demonstrated that they could be used for the feeding trial. Rats were necropsied after 3 and 6 months. Based on the Organization for Economic Cooperation and Development test guideline 408, the parameters tested showed a limited number of significant differences in pairwise comparisons, very few concerning GMP versus non-GMP. In such cases, no biological relevance could be established owing to the absence of difference in biologically linked variables, dose-response effects, or clinical disorders. No alteration of the reproduction function and kidney physiology was found. Metabolomics analyses on fluids (blood, urine) were performed after 3, 4.5, and 6 months. Transcriptomics analyses on organs (liver, kidney) were performed after 3 and 6 months. Again, among the significant differences in pairwise comparisons, no GMP effect was observed in contrast to that of maize variety and culture site. Indeed, based on transcriptomic and metabolomic data, we could differentiate MON- to NK-based diets. In conclusion, using this experimental design, no biomarkers of adverse health effect could be attributed to the consumption of GMP diets in comparison with the consumption of their near-isogenic non-GMP controls.


Subject(s)
Animal Feed/toxicity , Edible Grain/chemistry , Food, Genetically Modified/toxicity , Plants, Genetically Modified/chemistry , Zea mays/genetics , Animal Feed/standards , Animals , Consumer Product Safety , Edible Grain/genetics , Female , Food, Genetically Modified/standards , Male , Plants, Genetically Modified/genetics , Rats , Rats, Wistar , Toxicity Tests/methods , Zea mays/chemistry
2.
Water Res ; 104: 20-27, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27508970

ABSTRACT

Screening of a large number of emerging pollutants is highly desirable for the control of water quality. In this respect, a novel, fully automated contaminant screening method based on an integrated sample preconcentration and liquid chromatography coupled to high resolution mass spectrometry (SPE-UHPLC-HRMS) has been developed. The optimal chromatographic column and experimental conditions allowing the retention and subsequent elution of the maximum number of analytes were defined. Liquid chromatography and Q-exactive (Orbitrap™) parameters were optimized to obtain the best separation of molecules of interest, and the lowest detection limits. Due to the large amount of data to compare, a script written in R language was developed to evaluate the quality of the data generated by the comparison of 14 experimental conditions. The developed method enables the simultaneous semi quantitative analysis of 539 compounds (pesticides and drug residues), in 36 min with only 5 mL of water. Method validation was achieved through studies of repeatability, selectivity, linearity and matrix effect. Application to 20 tap water samples collected in and around Paris showed the presence of 34 different compounds all with concentrations below 0.1 µg/L, the European Union limit for drinking water. Pesticides and transformation products frequently found in water resources such as atrazine and its metabolites, hexazinone, oxadixyl, propazine and simazine were detected. Drug residues such as valsartan and carbamazepine, usually not monitored, were also found. The next step will be to assess the ability of this method to highlight the presence of unexpected contaminants not present in our database.


Subject(s)
Chromatography, Liquid , Water , Chromatography, High Pressure Liquid , Limit of Detection , Mass Spectrometry , Pesticides , Water Pollutants, Chemical/chemistry
3.
Anal Bioanal Chem ; 408(16): 4389-401, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27086012

ABSTRACT

A data fusion approach was applied to a commercial honey data set analysed by (1)H-nuclear magnetic resonance (NMR) 400 MHz and liquid chromatography-high resolution mass spectrometry (LC-HRMS). The latter was performed using two types of mass spectrometers: an Orbitrap-MS and a time of flight (TOF)-MS. Fifty-six honey samples from four monofloral origins (acacia, orange blossom, lavender and eucalyptus) and multifloral sources from various geographical origins were analysed using the three instruments. The discriminating power of the results was examined by PCA first considering each technique separately, and then combining NMR and LC-HRMS together with or without variable selection. It was shown that the discriminating potential is increased through the data fusion, allowing for a better separation of eucalyptus, orange blossom and lavender. The NMR-Orbitrap-MS and NMR-TOF-MS mid-level fusion models with variable selection were preferred as a good discrimination was obtained with no misclassification observed for the latter. This study opens the path to new comprehensive food profiling approaches combining more than one technique in order to benefit from the advantages of several technologies. Graphical Abstract Data fusion between high resolution 1H-NMR and mass spectrometry.


Subject(s)
Flowers/chemistry , Honey/analysis , Magnetic Resonance Spectroscopy/methods , Mass Spectrometry/methods , Discriminant Analysis , Plants/chemistry
4.
J Agric Food Chem ; 62(46): 11335-45, 2014 Nov 19.
Article in English | MEDLINE | ID: mdl-25358104

ABSTRACT

Analytical methods for food control are mainly focused on restricted lists of well-known contaminants. This paper shows that liquid chromatography-high-resolution mass spectrometry (LC/ESI-HRMS) associated with the data mining tools developed for metabolomics can address this issue by enabling (i) targeted analyses of pollutants, (ii) detection of untargeted and unknown xenobiotics, and (iii) detection of metabolites useful for the characterization of food matrices. A proof-of-concept study was performed on 76 honey samples. Targeted analysis indicated that 35 of 83 targeted molecules were detected in the 76 honey samples at concentrations below regulatory limits. Furthermore, untargeted metabolomic-like analyses highlighted 12 chlorinated xenobiotics, 1 of which was detected in lavender honey samples and identified as 2,6-dichlorobenzamide, a metabolite of dichlobenil, a pesticide banned in France since 2010. Lastly, multivariate statistical analyses discriminated honey samples according to their floral origin, and six discriminating metabolites were characterized thanks to the MS/MS experiments.


Subject(s)
Chromatography, Liquid/methods , Data Mining , Food Contamination/analysis , Honey/analysis , Mass Spectrometry/methods , Metabolomics
5.
Biotechnol Bioeng ; 111(10): 2027-40, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24954399

ABSTRACT

We developed a microfluidic platform to investigate paracetamol intestinal and liver first pass metabolism. This approach was coupled with a mathematical model to estimate intrinsic in vitro parameters and to predict in vivo processes. The kinetic modeling estimated the paracetamol and paracetamol sulfate permeabilities, the sulfate and glucuronide effluxes in the intestine compartment. Based on a gut model, we estimated intrinsic intestinal clearance of between 26 and 77 L/h for paracetamol in humans, a permeability of 10 L/h, and a gut availability between 0.17 and 0.53 (compared to 0.95-1 in vivo). The role played by the liver in paracetamol metabolism was estimated via in vitro intrinsic clearances of 7.6, 13.6, and 11.5 µL/min/10(6) cells for HepG2/C3a, rat primary hepatocytes, and human primary hepatocytes, respectively. Based on a parallel tube model to describe the liver, the paracetamol hepatic clearance, and the paracetamol hepatic availability in humans were estimated at 6.5 mL/min/kg of bodyweight (BDW) and 0.7, respectively (when compared to 5 mL/min/kg of BDW and 0.77 to 0.88 for in vivo values, respectively). The drug availability was predicted ranging between 0.24 and 0.41 (0.88 in vivo). The overall approach provided a first step in an integrated strategy combining in silico/in vitro methods based on microfluidic for evaluating drug absorption, distribution and metabolism processes.


Subject(s)
Acetaminophen/analogs & derivatives , Analgesics, Non-Narcotic/metabolism , Analgesics, Non-Narcotic/pharmacokinetics , Intestinal Mucosa/metabolism , Liver/metabolism , Acetaminophen/metabolism , Acetaminophen/pharmacokinetics , Animals , Bioreactors , Caco-2 Cells , Cells, Cultured , Equipment Design , Humans , Intestinal Absorption , Microfluidic Analytical Techniques , Models, Biological , Permeability , Rats
6.
Toxicol In Vitro ; 28(5): 1075-87, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24793618

ABSTRACT

We investigated the effects of the liver damage induced by flutamide in primary rat hepatocytes using liver microfluidic biochips. Flutamide is a non-steroidal anti-androgenic drug. Two flutamide concentrations, 10 µM and 100 µM, were used to expose the hepatocytes for 24h under perfusion. Thanks to the maintenance of hepatocyte differentiation phenotype and to the biotransformation performance in the microfluidic cultures, the metabolic ratio analysis of hydroxyflutamide, flutamide-gluthatione and hydroxyflutamide-gluthatione productions demonstrated saturation of the drug's biotransformation process and the maintenance of a high level of flutamide at 100 µM when compared to 10 µM. A microarray analysis comparing flutamide (10 or 100 µM) with controls revealed a common response for both concentrations illustrated by modulating the expression of the mRNA of genes associated with mitochondrial perturbation, of the proliferator-activated receptors (Ppar) signaling, lipid and fatty acid metabolism, antioxidant defense, and cell death pathways, consistently with in vitro and in vivo reports. Additionally to literature reports, our integration of the transcriptomic profiles demonstrated a specific dose dependent response. We found at 10 µM a typical pro-survival/apoptosis network activation (through IGF/PDGFD upstream route and via a downstream up regulation in CREB5, BCL2, IKBKG routes in the PI3K/signaling). We also found a down regulation of mRNA levels in sugar and amino acid metabolism pathways. At 100 µM a typical necrosis switch was observed associated with a down regulation of the tight junctions' pathway, a cellular aggregation and a reduction of the cell viability. Altogether our data demonstrated the potential and the sensitivity of our liver microfluidic cultures to evaluate xenobiotic toxicity by improving in vitro analysis and reproducing both in vitro and in vivo results. Finally, we proposed two integrated synthetic networks to describe the response of rat hepatocytes to both exposure concentrations of flutamide.


Subject(s)
Androgen Antagonists/toxicity , Flutamide/toxicity , Hepatocytes/drug effects , Microfluidic Analytical Techniques , Animals , Bioreactors , Cells, Cultured , Cytochrome P-450 CYP1A1/metabolism , Gene Expression Profiling , Hepatocytes/metabolism , Microarray Analysis , RNA, Messenger/metabolism , Rats
7.
J Pharm Sci ; 103(2): 706-18, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24338834

ABSTRACT

We investigated metabolic clearances of phenacetin, midazolam, propranolol, paracetamol, tolbutamide, caffeine, and dextromethorphan by primary rat hepatocytes cultivated in microfluidic biochips. The levels of mRNA of the HNF4α, PXR, AHR, CYP3A1, and CYP1A2 genes were enhanced in the biochip cultures when compared with postextraction levels. We measured a high and rapid adsorption on the biochip walls and inside the circuit for dextromethorphan and midazolam, a moderate adsorption for phenacetin and propranolol, and a low adsorption for caffeine, tolbutamide, and paracetamol. Drug biotransformations were demonstrated by the formations of specific metabolites such as paraxanthyne (caffeine), paracetamol (phenacetin), 1-OH midazolam (midazolam), paracetamol sulfate (paracetamol and phenacetin), and dextrorphan (dextromethorphan). We used a pharmacokinetic model to estimate the adsorption and in vitro intrinsic drug clearance values. We calculated in vitro intrinsic clearance values of 0.5, 3, 12.5, 83, 100, 160, and 900 µL/min per 10(6) cells for the tolbutamide, caffeine, paracetamol, dextromethorphan, phenacetin, midazolam, and propranolol, respectively. A second model describing the liver as a well-stirred compartment predicted in vivo hepatic clearances of 0.1, 13.8, 30, 44.1, 61, 72, 85, and 61 mL/min per kg of body mass for the tolbutamide, caffeine, paracetamol, midazolam, dextromethorphan, phenacetin, and propranolol, respectively. These values appeared consistent with previously reported data.


Subject(s)
Bioreactors , Liver/metabolism , Microfluidic Analytical Techniques/methods , Microfluidics , Pharmaceutical Preparations/metabolism , Pharmacokinetics , Algorithms , Animals , Cell Count , Cell Survival , Gas Chromatography-Mass Spectrometry , Hepatocytes/metabolism , Male , Microcomputers , Models, Statistical , Primary Cell Culture , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Solvents
8.
J Pharm Sci ; 102(9): 3264-76, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23423727

ABSTRACT

The functionality of primary rat hepatocytes was assessed in an Integrated Dynamic Cell Cultures in Microsystem (IDCCM) device. We characterized the hepatocytes over 96 h of culture and evaluated the impact of dynamic cell culture on their viability, inducibility, and metabolic activity. Reverse Transcription quantitative Polymerase Chain Reaction (RTqPCR) was performed on selected genes: liver transcription factors (HNF4α and CEBP), nuclear receptors sensitive to xenobiotics (AhR, PXR, CAR, and FXR), cytochromes P450 (CYPs) (1A2, 3A2, 3A23/3A1, 7A1, 2B1, 2C6, 2C, 2D1, 2D2, and 2E1), phase II metabolism enzymes (GSTA2, SULT1A1, and UGT1A6), ABC transporters (ABCB1b and ABCC2), and oxidative stress related enzymes (HMOX1 and NQO1). Microperfused-cultured hepatocytes remained viable and differentiated with in vivo-like phenotype and genotype. In contrast with postadhesion gene levels, the first 48 h of perfusion enhanced the expression of xenosensors and their target CYPs. Furthermore, CYP3A1, CYP2B1, GSTA2, SULT1A1, UGT1A1, ABCB1b, and ABCC2 were upregulated in IDCCM and reached above postextraction levels all along the duration of culture. Metabolic activities were also confirmed with the detection of metabolism rate and induced mRNAs after exposure to several inducers: 3-methylcholanthrene, caffeine, phenacetin, paracetamol,, and midazolam. Finally, this metabolic characterization confirms that IDCCM is able to maintain rat hepatocytes functions to investigate drug metabolism.


Subject(s)
Cell Culture Techniques/instrumentation , Hepatocytes/metabolism , Microfluidic Analytical Techniques/instrumentation , Pharmaceutical Preparations/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Animals , Cell Survival , Cells, Cultured , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Equipment Design , Gene Expression Regulation , Hepatocytes/cytology , Male , Rats , Rats, Sprague-Dawley , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Xenobiotics/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...