Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 95(8): 4453-7, 1998 Apr 14.
Article in English | MEDLINE | ID: mdl-9539758

ABSTRACT

Recent signaling resolution models of parent-offspring conflict have provided an important framework for theoretical and empirical studies of communication and parental care. According to these models, signaling of need is stabilized by its cost. However, our computer simulations of the evolutionary dynamics of chick begging and parental investment show that in Godfray's model the signaling equilibrium is evolutionarily unstable: populations that start at the signaling equilibrium quickly depart from it. Furthermore, the signaling and nonsignaling equilibria are linked by a continuum of equilibria where chicks above a certain condition do not signal and we show that, contrary to intuition, fitness increases monotonically as the proportion of young that signal decreases. This result forces us to reconsider much of the current literature on signaling of need and highlights the need to investigate the evolutionary stability of signaling equilibria based on the handicap principle.


Subject(s)
Biological Evolution , Feeding Behavior , Maternal Behavior , Models, Psychological , Animals , Chickens , Female , Genomic Imprinting , Models, Statistical
2.
Proc Natl Acad Sci U S A ; 93(25): 14637-41, 1996 Dec 10.
Article in English | MEDLINE | ID: mdl-8962106

ABSTRACT

In many species, young solicit food from their parents, which respond by feeding them. Because of the difference in genetic make-up between parents and their offspring and the consequent conflict, this interaction is often studied as a paradigm for the evolution of communication. Existent theoretical models demonstrate that chick signaling and parent responding can be stable if solicitation is a costly signal. The marginal cost of producing stronger signals allows the system to converge to an equilibrium: young beg with intensity that reflects their need, and parents use this information to maximize their own inclusive fitness. However, we show that there is another equilibrium where chicks do not beg and parents' provisioning effort is optimal with respect to the statistically probable distribution of chicks' states. Expected fitness for parents and offspring at the nonsignaling equilibrium is higher than at the signaling equilibrium. Because nonsignaling is stable and it is likely to be the ancestral condition, we would like to know how natural systems evolved from nonsignaling to signaling. We suggest that begging may have evolved through direct sibling fighting before the establishment of a parental response, that is, that nonsignaling squabbling leads to signaling. In multiple-offspring broods, young following a condition-dependent strategy in the contest for resources provide information about their condition. Parents can use this information even though it is not an adaptation for communication, and evolution will lead the system to the signaling equilibrium. This interpretation implies that signaling evolved in multiple-offspring broods, but given that signaling is evolutionarily stable, it would also be favored in species which secondarily evolved single-chick broods.


Subject(s)
Animal Communication , Biological Evolution , Models, Theoretical , Animals , Humans , Sibling Relations
SELECTION OF CITATIONS
SEARCH DETAIL
...