Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Life (Basel) ; 14(3)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38541623

ABSTRACT

The PI3K enzymes modify phospholipids to regulate cell growth and differentiation. Somatic variants in PI3K are recurrent in cancer and drive a proliferative phenotype. Somatic mosaicism of PIK3R1 and PIK3CA are associated with vascular anomalies and overgrowth syndromes. Germline PIK3R1 variants are associated with varying phenotypes, including immunodeficiency or facial dysmorphism with growth delay, lipoatrophy, and insulin resistance associated with SHORT syndrome. There has been limited study of the molecular mechanism to unify our understanding of how variants in PIK3R1 drive both undergrowth and overgrowth phenotypes. Thus, we compiled genomic variants from cancer and rare vascular anomalies and sought to interpret their effects using an unbiased physics-based simulation approach for the protein complex. We applied molecular dynamics simulations to mechanistically understand how genetic variants affect PIK3R1 and its interactions with PIK3CA. Notably, iSH2 genetic variants associated with undergrowth destabilize molecular interactions with the PIK3CA receptor binding domain in simulations, which is expected to decrease activity. On the other hand, overgrowth and cancer variants lead to loss of inhibitory interactions in simulations, which is expected to increase activity. We find that all disease variants display dysfunctions on either structural characteristics or intermolecular interaction energy. Thus, this comprehensive characterization of novel mosaic somatic variants associated with two opposing phenotypes has mechanistic importance and biomedical relevance and may aid in future therapeutic developments.

2.
J Soc Psychol ; : 1-16, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38402597

ABSTRACT

To determine whether relationship status moderates sexual prejudice, we compared heterosexual men and women's self-reported social distancing toward gay and lesbian targets who varied in relationship status (coupled, single, no information). Relationship status of gay male targets did not affect responses (Study 1): heterosexual men reported increased social distancing toward gay compared to heterosexual male targets, whereas women did not. Similarly, in Study 2, heterosexual men reported increased social distancing toward lesbian compared to heterosexual female targets, but women did not, and men reported decreased social distancing toward single lesbian women. Working from an affordance management approach, Study 3 replicated Studies 1 and 2, testing potential mediators of effects. In particular, heterosexual men reported increased social distancing toward gay male targets, compared to responses from heterosexual women. Moreover, heterosexual women reported increased social distancing toward single, compared to coupled, lesbian targets, mediated through perceptions of undesired sexual interest from the target. This work demonstrates the nuanced nature of sexual prejudice and provides further evidence of the role of perceptions of undesired sexual interest in prejudiced responses toward lesbian and gay individuals.

3.
Neurooncol Adv ; 6(1): vdad163, 2024.
Article in English | MEDLINE | ID: mdl-38213835

ABSTRACT

Retinoblastoma is an ocular cancer associated with genomic variation in the RB1 gene. In individuals with bilateral retinoblastoma, a germline variant in RB1 is identified in virtually all cases. We describe herein an individual with bilateral retinoblastoma for whom multiple clinical lab assays performed by outside commercial laboratories failed to identify a germline RB1 variant. Paired tumor/normal exome sequencing, long-read whole genome sequencing, and long-read isoform sequencing was performed on a translational research basis ultimately identified a germline likely de novo Long Interspersed Nuclear Element (LINE)-1 mediated deletion resulting in a premature stop of translation of RB1 as the underlying genetic cause of retinoblastoma in this individual. Based on these research findings, the LINE-1 mediated deletion was confirmed via Sanger sequencing in our clinical laboratory, and results were reported in the patient's medical record to allow for appropriate genetic counseling.

4.
BMC Genomics ; 25(1): 122, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38287261

ABSTRACT

BACKGROUND: Cancers exhibit complex transcriptomes with aberrant splicing that induces isoform-level differential expression compared to non-diseased tissues. Transcriptomic profiling using short-read sequencing has utility in providing a cost-effective approach for evaluating isoform expression, although short-read assembly displays limitations in the accurate inference of full-length transcripts. Long-read RNA sequencing (Iso-Seq), using the Pacific Biosciences (PacBio) platform, can overcome such limitations by providing full-length isoform sequence resolution which requires no read assembly and represents native expressed transcripts. A constraint of the Iso-Seq protocol is due to fewer reads output per instrument run, which, as an example, can consequently affect the detection of lowly expressed transcripts. To address these deficiencies, we developed a concatenation workflow, PacBio Full-Length Isoform Concatemer Sequencing (PB_FLIC-Seq), designed to increase the number of unique, sequenced PacBio long-reads thereby improving overall detection of unique isoforms. In addition, we anticipate that the increase in read depth will help improve the detection of moderate to low-level expressed isoforms. RESULTS: In sequencing a commercial reference (Spike-In RNA Variants; SIRV) with known isoform complexity we demonstrated a 3.4-fold increase in read output per run and improved SIRV recall when using the PB_FLIC-Seq method compared to the same samples processed with the Iso-Seq protocol. We applied this protocol to a translational cancer case, also demonstrating the utility of the PB_FLIC-Seq method for identifying differential full-length isoform expression in a pediatric diffuse midline glioma compared to its adjacent non-malignant tissue. Our data analysis revealed increased expression of extracellular matrix (ECM) genes within the tumor sample, including an isoform of the Secreted Protein Acidic and Cysteine Rich (SPARC) gene that was expressed 11,676-fold higher than in the adjacent non-malignant tissue. Finally, by using the PB_FLIC-Seq method, we detected several cancer-specific novel isoforms. CONCLUSION: This work describes a concatenation-based methodology for increasing the number of sequenced full-length isoform reads on the PacBio platform, yielding improved discovery of expressed isoforms. We applied this workflow to profile the transcriptome of a pediatric diffuse midline glioma and adjacent non-malignant tissue. Our findings of cancer-specific novel isoform expression further highlight the importance of long-read sequencing for characterization of complex tumor transcriptomes.


Subject(s)
Glioma , Transcriptome , Humans , Child , Gene Expression Profiling/methods , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA Splicing , Sequence Analysis, RNA , High-Throughput Nucleotide Sequencing/methods
5.
Mol Genet Genomic Med ; 12(3): e2349, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38263869

ABSTRACT

BACKGROUND: Chromosomal microarray (CMA) is commonly utilized in the obstetrics setting. CMA is recommended when one or more fetal structural abnormalities is identified. CMA is also commonly used to determine genetic etiologies for miscarriages, fetal demise, and confirming positive prenatal cell-free DNA screening results. METHODS: In this study, we retrospectively examined 523 prenatal and 319 products-of-conception (POC) CMA cases tested at Nationwide Children's Hospital from 2011 to 2020. We reviewed the referral indications, the diagnostic yield, and the reported copy number variants (CNV) findings. RESULTS: In our cohort, the diagnostic yield of clinically significant CNV findings for prenatal testing was 7.8% (n = 41/523) compared to POC testing (16.3%, n = 52/319). Abnormal ultrasound findings were the most common indication present in 81% of prenatal samples. Intrauterine fetal demise was the common indication identified in POC samples. The most common pathogenic finding observed in all samples was isolated trisomy 21, detected in seven samples. CONCLUSION: Our CMA study supports the clinical utility of prenatal CMA for clinical management and identifying genetic etiology in POC arrays. In addition, it provides insight to the spectrum of prenatal and POC CMA results as detected in an academic hospital clinical laboratory setting that serves as a reference laboratory.


Subject(s)
Chromosome Disorders , Down Syndrome , Female , Humans , Pregnancy , Chromosome Disorders/diagnosis , Chromosome Disorders/genetics , Fetal Death , Prenatal Diagnosis/methods , Retrospective Studies
7.
Am J Surg Pathol ; 48(1): 106-111, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37750536

ABSTRACT

Papillary hemangioma (PH) is a small, primarily dermal lesion occurring predominantly in the head and neck in both children and adults. Its signature characteristics are dilated thin-walled channels containing papillary clusters of mainly capillary-sized vessels and endothelial cytoplasmic eosinophilic inclusions. Given certain histopathologic similarities to congenital hemangioma which harbor mutations in GNAQ and GNA11 , we investigated whether similar mutations are present in PH. Seven PH specimens were studied. All presented in the first 4 years of life, with one being noted at birth. With the exception of one lesion, all were in the head and neck. Lesions were bluish and ranged in size from 0.5 to 2.8 cm. Four samples had GNA11 p.Q209L and 3 had GNAQ p.Q209L missense mutations. Mutations in GNA11 and GNAQ are associated with other types of somatic vascular lesions including capillary malformation, congenital hemangioma, anastomosing hemangioma, thrombotic anastomosing hemangioma, and hepatic small cell neoplasm. Shared mutations in GNA11 and GNAQ may account for some overlapping clinical and pathologic features in these entities, perhaps explicable by the timing of the mutation or influence of the germline phenotype.


Subject(s)
GTP-Binding Protein alpha Subunits , Hemangioma , Mutation , Humans , Male , Female , Infant, Newborn , Infant , Child, Preschool , Child , Hemangioma/genetics , Hemangioma/pathology , Hemangioma/surgery , GTP-Binding Protein alpha Subunits/genetics
8.
Muscle Nerve ; 68(6): 833-840, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37789688

ABSTRACT

INTRODUCTION/AIMS: Exome sequencing (ES) has proven to be a valuable diagnostic tool for neuromuscular disorders, which often pose a diagnostic challenge. The aims of this study were to investigate the clinical outcomes associated with utilization of ES in the pediatric neuromuscular clinic and to determine if specific phenotypic features or abnormal neurodiagnostic tests were predictive of a diagnostic result. METHODS: This was a retrospective medical record review of 76 pediatric neuromuscular clinic patients who underwent ES. Based upon clinical assessment prior to ES, patients were divided into two groups: affected by neuromuscular (n = 53) or non-neuromuscular (n = 23) syndromes. RESULTS: A diagnosis was made in 28/76 (36.8%), with 29 unique disorders identified. In the neuromuscular group, a neuromuscular condition was confirmed in 78% of those receiving a genetic diagnosis. Early age of symptom onset was associated with a significantly higher diagnostic yield. The most common reason neuromuscular diagnoses were not detected on prior testing was due to causative genes not being present on disease-specific panels. Changes to medical care were made in 57% of individuals receiving a diagnosis on ES. DISCUSSION: These data further support ES as a powerful diagnostic tool in the pediatric neuromuscular clinic and highlight the advantages of ES over gene panels, including the ability to identify diagnoses regardless of etiology, identify genes newly associated with disease, and identify multiple confounding diagnoses. Rapid and accurate diagnosis by ES can not only end the patient's diagnostic odyssey, but often impacts patients' medical management and genetic counseling of families.


Subject(s)
Genetic Counseling , Neuromuscular Diseases , Humans , Child , Exome Sequencing , Retrospective Studies , Neuromuscular Diseases/diagnosis , Neuromuscular Diseases/genetics , Genetic Testing
9.
Cancers (Basel) ; 15(17)2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37686670

ABSTRACT

Gene fusions are a form of structural rearrangement well established as driver events in pediatric and adult cancers. The identification of such events holds clinical significance in the refinement, prognostication, and provision of treatment in cancer. Structural rearrangements also extend beyond fusions to include intragenic rearrangements, such as internal tandem duplications (ITDs) or exon-level deletions. These intragenic events have been increasingly implicated as cancer-promoting events. However, the detection of intragenic rearrangements may be challenging to resolve bioinformatically with short-read sequencing technologies and therefore may not be routinely assessed in panel-based testing. Within an academic clinical laboratory, over three years, a total of 608 disease-involved samples (522 hematologic malignancy, 86 solid tumors) underwent clinical testing using Anchored Multiplex PCR (AMP)-based RNA sequencing. Hematologic malignancies were evaluated using a custom Pan-Heme 154 gene panel, while solid tumors were assessed using a custom Pan-Solid 115 gene panel. Gene fusions, ITDs, and intragenic deletions were assessed for diagnostic, prognostic, or therapeutic significance. When considering gene fusions alone, we report an overall diagnostic yield of 36% (37% hematologic malignancy, 41% solid tumors). When including intragenic structural rearrangements, the overall diagnostic yield increased to 48% (48% hematologic malignancy, 45% solid tumor). We demonstrate the clinical utility of reporting structural rearrangements, including gene fusions and intragenic structural rearrangements, using an AMP-based RNA sequencing panel.

10.
J Genet Couns ; 32(6): 1213-1216, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37571913

ABSTRACT

As a result of the pandemic, the traditional in-person didactic lecture model was adapted to a virtual learning approach. Our Laboratory Genetics and Genomics fellowship program at Nationwide Children's hospital took advantage of this opportunity to organize a multi-institutional Fellow's Conference to educate fellows from different programs on a wide range of medical genetics topics. We describe our approach of developing this lecture series utilizing subject-matter experts across institutions. In addition, we discuss the value of such an approach in reducing the amount of time individual institutions spend creating and providing didactic content for their small number of learners. Our experience could serve as a model for other educators and program directors, including genetic counseling program directors, to develop multi-institutional collaborations for didactic learning.


Subject(s)
Fellowships and Scholarships , Learning , Child , Humans , Education, Medical, Graduate , Curriculum , Laboratories , Surveys and Questionnaires
11.
Genome Med ; 15(1): 20, 2023 04 03.
Article in English | MEDLINE | ID: mdl-37013636

ABSTRACT

BACKGROUND: Molecular profiling of the tumour immune microenvironment (TIME) has enabled the rational choice of immunotherapies in some adult cancers. In contrast, the TIME of paediatric cancers is relatively unexplored. We speculated that a more refined appreciation of the TIME in childhood cancers, rather than a reliance on commonly used biomarkers such as tumour mutation burden (TMB), neoantigen load and PD-L1 expression, is an essential prerequisite for improved immunotherapies in childhood solid cancers. METHODS: We combined immunohistochemistry (IHC) with RNA sequencing and whole-genome sequencing across a diverse spectrum of high-risk paediatric cancers to develop an alternative, expression-based signature associated with CD8+ T-cell infiltration of the TIME. Furthermore, we explored transcriptional features of immune archetypes and T-cell receptor sequencing diversity, assessed the relationship between CD8+ and CD4+ abundance by IHC and deconvolution predictions and assessed the common adult biomarkers such as neoantigen load and TMB. RESULTS: A novel 15-gene immune signature, Immune Paediatric Signature Score (IPASS), was identified. Using this signature, we estimate up to 31% of high-risk cancers harbour infiltrating T-cells. In addition, we showed that PD-L1 protein expression is poorly correlated with PD-L1 RNA expression and TMB and neoantigen load are not predictive of T-cell infiltration in paediatrics. Furthermore, deconvolution algorithms are only weakly correlated with IHC measurements of T-cells. CONCLUSIONS: Our data provides new insights into the variable immune-suppressive mechanisms dampening responses in paediatric solid cancers. Effective immune-based interventions in high-risk paediatric cancer will require individualised analysis of the TIME.


Subject(s)
B7-H1 Antigen , Neoplasms , Adult , Humans , Child , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Neoplasms/genetics , CD8-Positive T-Lymphocytes/metabolism , Biomarkers, Tumor/genetics , Tumor Microenvironment/genetics , Mutation
12.
Cancers (Basel) ; 15(6)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36980535

ABSTRACT

BACKGROUND: Approximately 10% of pediatric malignancies are secondary to germline alterations in cancer-predisposing genes. Checkpoint kinase 2 (CHEK2) germline loss-of-function variants have been reported in pediatric cancer patients, but clinical phenotypes and outcomes are poorly described. We present our single-institution experience of pediatric oncology patients with CHEK2 germline alterations, including clinical presentations and outcomes. METHODS: Pediatric oncology patients with CHEK2 germline alterations were identified among those assessed by clinical or translational research at the Institute for Genomic Medicine at Nationwide Children's Hospital. A chart review of disease course was conducted on identified patients. RESULTS: We identified 6 patients with germline CHEK2 variants from a cohort of 300 individuals, including 1 patient with concurrent presentation of Burkitt lymphoma and neuroblastoma, 3 patients with brain tumors, 1 patient with Ewing sarcoma, and 1 patient with myelodysplastic syndrome. Three patients had a family history of malignancies. Four patients were in remission; one was undergoing treatment; one patient had developed treatment-related meningiomas. We review prior data regarding CHEK2 variants in this population, challenges associated with variant interpretation, and genetic counseling for individuals with CHEK2 variants. CONCLUSIONS: CHEK2 germline loss-of-function alterations occur in patients with a variety of pediatric tumors. Larger multicenter studies will improve our understanding of the incidence, phenotype, and molecular biology of CHEK2 germline variants in pediatric cancers.

14.
J Mol Diagn ; 25(2): 69-86, 2023 02.
Article in English | MEDLINE | ID: mdl-36503149

ABSTRACT

To assess the clinical implementation of the 2017 Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists, identify content that may result in classification inconsistencies, and evaluate implementation barriers, an Association for Molecular Pathology Working Group conducted variant interpretation challenges and a guideline implementation survey. A total of 134 participants participated in the variant interpretation challenges, consisting of 11 variants in four cancer cases. Results demonstrate 86% (range, 54% to 94%) of the respondents correctly classified clinically significant variants, variants of uncertain significance, and benign/likely benign variants; however, only 59% (range, 39% to 84%) of responses agreed with the working group's consensus intended responses regarding both tiers and categories of clinical significance. In the implementation survey, 71% (157/220) of respondents have implemented the 2017 guidelines for variant classification and reporting either with or without modifications. Collectively, this study demonstrates that, although they may not yet be optimized, the 2017 guideline recommendations are being adopted for standardized somatic variant classification. The working group identified significant areas for future guideline improvement, including the need for a more granular and comprehensive classification system and education resources to meet the growing needs of both laboratory professionals and medical oncologists.


Subject(s)
Neoplasms , Pathology, Molecular , Humans , United States , Pathologists , Neoplasms/diagnosis , Neoplasms/genetics , High-Throughput Nucleotide Sequencing , Medical Oncology
15.
Genet Med ; 25(3): 100348, 2023 03.
Article in English | MEDLINE | ID: mdl-36571464

ABSTRACT

PURPOSE: RAS genes (HRAS, KRAS, and NRAS) are commonly found to be mutated in cancers, and activating RAS variants are also found in disorders of somatic mosaicism (DoSM). A survey of the mutational spectrum of RAS variants in DoSM has not been performed. METHODS: A total of 938 individuals with suspected DoSM underwent high-sensitivity clinical next-generation sequencing-based testing. We investigated the mutational spectrum and genotype-phenotype associations of mosaic RAS variants. RESULTS: In this article, we present a series of individuals with DoSM with RAS variants. Classic hotspots, including Gly12, Gly13, and Gln61 constituted the majority of RAS variants observed in DoSM. Furthermore, we present 12 individuals with HRAS and KRAS in-frame duplication/insertion (dup/ins) variants in the switch II domain. Among the 18.3% individuals with RAS in-frame dup/ins variants, clinical findings were mainly associated with vascular malformations. Hotspots were associated with a broad phenotypic spectrum, including vascular tumors, vascular malformations, nevoid proliferations, segmental overgrowth, digital anomalies, and combinations of these. The median age at testing was higher and the variant allelic fraction was lower in individuals with in-frame dup/ins variants than those in individuals with mosaic RAS hotspots. CONCLUSION: Our work provides insight into the allelic and clinical heterogeneity of mosaic RAS variants in nonmalignant conditions.


Subject(s)
Mosaicism , Vascular Malformations , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Mutation , Alleles , Vascular Malformations/genetics
16.
Genes Chromosomes Cancer ; 62(1): 17-26, 2023 01.
Article in English | MEDLINE | ID: mdl-35801295

ABSTRACT

Next-generation sequencing (NGS) assays can sensitively detect somatic variation, and increasingly can enable the identification of complex structural rearrangements. A subset of infantile spindle cell sarcomas, particularly congenital mesoblastic nephromas with classic or mixed histology, have structural rearrangement in the form of internal tandem duplications (ITD) involving EGFR. We performed prospective analysis to identify EGFR ITD through clinical or research studies, as well as retrospective analysis to quantify the frequency of EGFR ITD in pediatric sarcomas. Within our institution, three tumors with EGFR ITD were prospectively identified, all occurring in patients less than 1 year of age at diagnosis, including two renal tumors and one mediastinal soft tissue tumor. These three cases exhibited both cellular and mixed cellular and classic histology. All patients had no evidence of disease progression off therapy, despite incomplete resection. To extend our analysis and quantify the frequency of EGFR ITD in pediatric sarcomas, we retrospectively analyzed a cohort of tumors (n = 90) that were previously negative for clinical RT-PCR-based fusion testing. We identified EGFR ITD in three analyzed cases, all in patients less than 1 year of age (n = 18; 3/18, 17%). Here we expand the spectrum of tumors with EGFR ITD to congenital soft tissue tumors and report an unusual example of an EGFR ITD in a tumor with cellular congenital mesoblastic nephroma histology. We also highlight the importance of appropriate test selection and bioinformatic analysis for identification of this genomic alteration that is unexpectedly common in congenital and infantile spindle cell tumors.


Subject(s)
Kidney Neoplasms , Nephroma, Mesoblastic , Sarcoma , Soft Tissue Neoplasms , Infant, Newborn , Child , Humans , Retrospective Studies , Nephroma, Mesoblastic/genetics , Nephroma, Mesoblastic/congenital , Nephroma, Mesoblastic/pathology , Soft Tissue Neoplasms/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Sarcoma/genetics , Sarcoma/pathology , ErbB Receptors/genetics
17.
J Invest Dermatol ; 143(6): 1042-1051.e3, 2023 06.
Article in English | MEDLINE | ID: mdl-36566878

ABSTRACT

Phakomatosis pigmentovascularis is a diagnosis that denotes the coexistence of pigmentary and vascular birthmarks of specific types, accompanied by variable multisystem involvement, including CNS disease, asymmetrical growth, and a predisposition to malignancy. Using a tight phenotypic group and high-depth next-generation sequencing of affected tissues, we discover here clonal mosaic variants in gene PTPN11 encoding SHP2 phosphatase as a cause of phakomatosis pigmentovascularis type III or spilorosea. Within an individual, the same variant is found in distinct pigmentary and vascular birthmarks and is undetectable in blood. We go on to show that the same variants can cause either the pigmentary or vascular phenotypes alone, and drive melanoma development within pigmentary lesions. Protein structure modeling highlights that although variants lead to loss of function at the level of the phosphatase domain, resultant conformational changes promote longer ligand binding. In vitro modeling of the missense variants confirms downstream MAPK pathway overactivation and widespread disruption of human endothelial cell angiogenesis. Importantly, patients with PTPN11 mosaicism theoretically risk passing on the variant to their children as the germline RASopathy Noonan syndrome with lentigines. These findings improve our understanding of the pathogenesis and biology of nevus spilus and capillary malformation syndromes, paving the way for better clinical management.


Subject(s)
Lentigo , Melanoma , Neurocutaneous Syndromes , Child , Humans , Neurocutaneous Syndromes/genetics , Neurocutaneous Syndromes/pathology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Mosaicism , Melanoma/genetics
18.
Genes Chromosomes Cancer ; 62(1): 39-46, 2023 01.
Article in English | MEDLINE | ID: mdl-35716171

ABSTRACT

Ependymal tumors are the third most common brain tumor under 14 years old. Even though metastatic disease is a rare event, it affects mostly young children and carries an adverse prognosis. The factors associated with dissemination and the best treatment approach have not yet been established and there is limited published data on how to manage metastatic disease, especially in patients under 3 years of age. We provide a review of the literature on clinical characteristics and radiation-sparing treatments for metastatic ependymoma in children under 3 years of age treated. The majority (73%) of the identified cases were above 12 months old and had the PF as the primary site at diagnosis. Chemotherapy-based approaches, in different regimens, were used with radiation reserved for progression or relapse. The prognosis varied among the studies, with an average of 50%-58% overall survival. This study also describes the case of a 7-month-old boy with metastatic posterior fossa (PF) ependymoma, for whom we identified a novel SPECC1L-RAF1 gene fusion using a patient-centric comprehensive molecular profiling protocol. The patient was successfully treated with intensive induction chemotherapy followed by high-dose chemotherapy and autologous hematopoietic progenitor cell rescue (AuHSCR). Currently, the patient is in continuous remission 5 years after his diagnosis, without radiation therapy. The understanding of the available therapeutic approaches may assist physicians in their management of such patients. This report also opens the perspective of newly identified molecular alterations in metastatic ependymomas that might drive more chemo-sensitive tumors.


Subject(s)
Brain Neoplasms , Ependymoma , Hematopoietic Stem Cell Transplantation , Child , Male , Humans , Child, Preschool , Infant , Adolescent , Neoplasm Recurrence, Local , Ependymoma/drug therapy , Ependymoma/genetics , Ependymoma/radiotherapy , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/diagnosis
19.
Pediatr Dermatol ; 39(6): 914-919, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36440997

ABSTRACT

BACKGROUND AND OBJECTIVES: Cutaneous capillary malformations (CMs) describe a group of vascular birthmarks with heterogeneous presentations. CMs may present as an isolated finding or with other associations, including glaucoma and leptomeningeal angiomatosis (i.e., Sturge-Weber syndrome) or pigmentary birthmarks (i.e., phakomatosis pigmentovascularis). The use of targeted genetic sequencing has revealed that postzygotic somatic variations in GNAQ and GNA11 at codon 183 are associated with CMs. We report five patients with early-onset hypertension and discuss possible pathogenesis of hypertension. METHODS: Twenty-nine patients with CMs, confirmed GNAQ/11 postzygotic variants, and documented past medical history were identified from a multi-institutional vascular anomalies study. Early-onset hypertension was defined as hypertension before the age of 55 years. Clinical data were reviewed for evidence of hypertension, such as documentation of diagnosis or elevated blood pressure measurements. RESULTS: Five of the 29 patients identified as having GNAQ/11 postzygotic variants had documented early-onset hypertension. Three individuals harbored a GNAQ p.R183Q variant, and two individuals harbored a GNA11 p.R183C variant. All individuals had extensive cutaneous CMs involving the trunk and covering 9%-56% of their body surface area. The median age of hypertension diagnosis was 15 years (range 11-24 years), with three individuals having renal abnormalities on imaging. CONCLUSIONS: Early-onset hypertension is associated with extensive CMs harboring somatic variations in GNAQ/11. Here, we expand on the GNAQ/11 phenotype and hypothesize potential mechanisms driving hypertension. We recommend serial blood pressure measurements in patients with extensive CMs on the trunk and extremities to screen for early-onset hypertension.


Subject(s)
Hypertension , Vascular Malformations , Humans , Extremities , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , GTP-Binding Protein alpha Subunits/genetics
20.
J Mol Diagn ; 24(12): 1292-1306, 2022 12.
Article in English | MEDLINE | ID: mdl-36191838

ABSTRACT

Genomic profiling using short-read sequencing has utility in detecting disease-associated variation in both DNA and RNA. However, given the frequent occurrence of structural variation in cancer, molecular profiling using long-read sequencing improves the resolution of such events. For example, the Pacific Biosciences long-read RNA-sequencing (Iso-Seq) transcriptome protocol provides full-length isoform characterization, discernment of allelic phasing, and isoform discovery, and identifies expressed fusion partners. The Pacific Biosciences Fusion and Long Isoform Pipeline (PB_FLIP) incorporates a suite of RNA-sequencing software analysis tools and scripts to identify expressed fusion partners and isoforms. In addition, sequencing of a commercial reference (Spike-In RNA Variants) with known isoform complexity was performed and demonstrated high recall of the Iso-Seq and PB_FLIP workflow to benchmark our protocol and analysis performance. This study describes the utility of Iso-Seq and PB_FLIP analysis in improving deconvolution of complex structural variants and isoform detection within an institutional pediatric and adolescent/young adult translational cancer research cohort. The exemplar case studies demonstrate that Iso-Seq and PB_FLIP discover novel expressed fusion partners, resolve complex intragenic alterations, and discriminate between allele-specific expression profiles.


Subject(s)
Neoplasms , Transcriptome , Adolescent , Child , Humans , Alternative Splicing , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , Neoplasms/genetics , Protein Isoforms/genetics , RNA/genetics , Sequence Analysis, RNA , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...