Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Environ Microbiol Rep ; 16(2): e13249, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38634243

ABSTRACT

Aspergillus flavus is the most frequently identified producer of aflatoxins. Non-aflatoxigenic members of the A. flavus L strains are used in various continents as active ingredients of bioprotectants directed at preventing aflatoxin contamination by competitive displacement of aflatoxin producers. The current research examined the genetic diversity of A. flavus L strain across southern Europe to gain insights into the population structure and evolution of this species and to evaluate the prevalence of genotypes closely related to MUCL54911, the active ingredient of AF-X1. A total of 2173L strain isolates recovered from maize collected across Greece, Spain, and Serbia in 2020 and 2021 were subjected to simple sequence repeat (SSR) genotyping. The analysis revealed high diversity within and among countries and dozens of haplotypes shared. Linkage disequilibrium analysis indicated asexual reproduction and clonal evolution of A. flavus L strain resident in Europe. Moreover, haplotypes closely related to MUCL54911 were found to belong to the same vegetative compatibility group (VCG) IT006 and were relatively common in all three countries. The results indicate that IT006 is endemic to southern Europe and may be utilized as an aflatoxin mitigation tool for maize across the region without concern for potential adverse impacts associated with the introduction of an exotic microorganism.


Subject(s)
Aflatoxins , Aspergillus flavus , Aflatoxins/genetics , Zea mays , Greece , Spain , Serbia
2.
Pestic Biochem Physiol ; 201: 105887, 2024 May.
Article in English | MEDLINE | ID: mdl-38685218

ABSTRACT

Aspergillus flavus is a ubiquitous facultative pathogen that routinely infects important crops leading to formation of aflatoxins during crop development and after harvest. Corn and peanuts in warm and/or drought-prone regions are highly susceptible to aflatoxin contamination. Controlling aflatoxin using atoxigenic A. flavus is a widely adopted strategy. However, no A. flavus genotypes are currently approved for use in China. The current study aimed to select atoxigenic A. flavus endemic to Guangxi Zhuang Autonomous Region with potential as active ingredients of aflatoxin biocontrol products. A total of 204 A. flavus isolates from corn, peanuts, and field soil were evaluated for ability to produce the targeted mycotoxins. Overall, 57.3% could not produce aflatoxins while 17.15% were incapable of producing both aflatoxins and CPA. Atoxigenic germplasm endemic to Guangxi was highly diverse, yielding 8 different gene deletion patterns in the aflatoxin and CPA biosynthesis gene clusters ranging from no deletion to deletion of both clusters. Inoculation of corn and peanuts with both an aflatoxin producer and selected atoxigenic genotypes showed significant reduction (74 to 99%) in aflatoxin B1 (AFB1) formation compared with inoculation with the aflatoxin producer alone. Atoxigenic genotypes also efficiently degraded AFB1 (61%). Furthermore, atoxigenic isolates were also highly efficient at reducing aflatoxin concentrations even when present at lower concentrations than aflatoxin producers. The use of multiple atoxigenics was not always as effective as the use of a single atoxigenic. Effective atoxigenic genotypes of A. flavus with known mechanisms of atoxigenicity are demonstrated to be endemic to Southern China. These A. flavus may be utilized as active ingredients of biocontrol products without concern for detrimental impacts that may result from introduction of exotic fungi. Field efficacy trials in the agroecosystems of Southern China are needed to determine the extent to which such products may allow the production of safer food and feed.


Subject(s)
Aflatoxins , Arachis , Aspergillus flavus , Zea mays , Aspergillus flavus/genetics , Aspergillus flavus/metabolism , Arachis/microbiology , Zea mays/microbiology , China , Biological Control Agents , Food Contamination/prevention & control , Genotype
4.
Front Microbiol ; 14: 1106543, 2023.
Article in English | MEDLINE | ID: mdl-37065127

ABSTRACT

Aflatoxin contamination of the staples maize and groundnut is a concern for health and economic impacts across sub-Saharan Africa. The current study (i) determined aflatoxin levels in maize and groundnut collected at harvest in Burundi, (ii) characterized populations of Aspergillus section Flavi associated with the two crops, and (iii) assessed aflatoxin-producing potentials among the recovered fungi. A total of 120 groundnut and 380 maize samples were collected at harvest from eight and 16 provinces, respectively. Most of the groundnut (93%) and maize (87%) contained aflatoxin below the European Union threshold, 4 µg/kg. Morphological characterization of the recovered Aspergillus section Flavi fungi revealed that the L-morphotype of A. flavus was the predominant species. Aflatoxin production potentials of the L-morphotype isolates were evaluated in maize fermentations. Some isolates produced over 137,000 µg/kg aflatoxin B1. Thus, despite the relatively low aflatoxin levels at harvest, the association of both crops with highly toxigenic fungi poses significant risk of post-harvest aflatoxin contamination and suggests measures to mitigate aflatoxin contamination in Burundi should be developed. Over 55% of the L-morphotype A. flavus did not produce aflatoxins. These atoxigenic L-morphotype fungi were characterized using molecular markers. Several atoxigenic genotypes were detected across the country and could be used as biocontrol agents. The results from the current study hold promise for developing aflatoxin management strategies centered on biocontrol for use in Burundi to reduce aflatoxin contamination throughout the value chain.

5.
Toxins (Basel) ; 15(3)2023 02 28.
Article in English | MEDLINE | ID: mdl-36977075

ABSTRACT

AF-X1 is a commercial aflatoxin biocontrol product containing the non-aflatoxigenic (AF-) strain of Aspergillus flavus MUCL54911 (VCG IT006), endemic to Italy, as an active ingredient. The present study aimed to evaluate the long-term persistence of VCG IT006 in the treated fields, and the multi-year influence of the biocontrol application on the A. flavus population. Soil samples were collected in 2020 and 2021 from 28 fields located in four provinces in north Italy. A vegetative compatibility analysis was conducted to monitor the occurrence of VCG IT006 on the total of the 399 isolates of A. flavus that were collected. IT006 was present in all the fields, mainly in the fields treated for 1 yr or 2 consecutive yrs (58% and 63%, respectively). The densities of the toxigenic isolates, detected using the aflR gene, were 45% vs. 22% in the untreated and treated fields, respectively. After displacement via the AF- deployment, a variability from 7% to 32% was noticed in the toxigenic isolates. The current findings support the long-term durability of the biocontrol application benefits without deleterious effects on each fungal population. Nevertheless, based on the current results, as well as on previous studies, the yearly applications of AF-X1 to Italian commercial maize fields should continue.


Subject(s)
Aflatoxins , Zea mays/microbiology , Aspergillus flavus/genetics , Italy
6.
Mycotoxin Res ; 39(1): 33-44, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36443622

ABSTRACT

This study reports levels of aflatoxin and fumonisin in maize samples (n = 1294) from all agroecological zones (AEZs) in Malawi. Most maize samples (> 75%) were contaminated with aflatoxins and 45% with fumonisins, which co-occurred in 38% of the samples. Total aflatoxins varied across the AEZs, according to mean annual temperature (P < 0.05) of the AEZs. Samples from the lower Shire AEZ (median = 20.8 µg/kg) had higher levels of aflatoxins (P < 0.05) than those from the other AEZs (median = 3.0 µg/kg). Additionally, the majority (75%) of the positive samples from the lower Shire AEZ had aflatoxin levels exceeding the EU regulatory limit (4 µg/kg), whereas 25%, 37%, and 39% of positive samples exceeded the threshold in the mid-elevation, Lake Shore and upper and middle Shire, and highlands AEZs, respectively. The lower Shire AEZ is characterised by higher mean temperatures throughout the year and low erratic rainfall. However, total fumonisins did not show significant variation across AEZs, but all positive samples exceeded 150 µg/kg, required for tolerable daily intake of 1.0 µg/kg body weight per day, established by the European Food Safety Authority Panel on Contaminants in the Food Chain. Therefore, results of this study suggest that contamination of maize with aflatoxin responds to micro-climate more than with fumonisins. In addition, the data will be useful to public health policy-makers and stakeholders to articulate and implement monitoring and mitigation programs.


Subject(s)
Aflatoxins , Fumonisins , Aflatoxins/analysis , Fumonisins/analysis , Zea mays , Malawi , Food Contamination/analysis
7.
Front Microbiol ; 13: 1049013, 2022.
Article in English | MEDLINE | ID: mdl-36504767

ABSTRACT

Aflatoxins, produced by several Aspergillus section Flavi species in various crops, are a significant public health risk and a barrier to trade and development. In sub-Saharan Africa, maize and groundnut are particularly vulnerable to aflatoxin contamination. Aflasafe, a registered aflatoxin biocontrol product, utilizes atoxigenic A. flavus genotypes native to Nigeria to displace aflatoxin producers and mitigate aflatoxin contamination. Aflasafe was evaluated in farmers' fields for 3 years, under various regimens, to quantify carry-over of the biocontrol active ingredient genotypes. Nine maize fields were each treated either continuously for 3 years, the first two successive years, in year 1 and year 3, or once during the first year. For each treated field, a nearby untreated field was monitored. Aflatoxins were quantified in grain at harvest and after simulated poor storage. Biocontrol efficacy and frequencies of the active ingredient genotypes decreased in the absence of annual treatment. Maize treated consecutively for 2 or 3 years had significantly (p < 0.05) less aflatoxin (92% less) in grain at harvest than untreated maize. Maize grain from treated fields subjected to simulated poor storage had significantly less (p < 0.05) aflatoxin than grain from untreated fields, regardless of application regimen. Active ingredients occurred at higher frequencies in soil and grain from treated fields than from untreated fields. The incidence of active ingredients recovered in soil was significantly correlated (r = 0.898; p < 0.001) with the incidence of active ingredients in grain, which in turn was also significantly correlated (r = -0.621, p = 0.02) with aflatoxin concentration. Although there were carry-over effects, caution should be taken when drawing recommendations about discontinuing biocontrol use. Cost-benefit analyses of single season and carry-over influences are needed to optimize use by communities of smallholder farmers in sub-Saharan Africa.

8.
Plant Dis ; 106(7): 1818-1825, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35084943

ABSTRACT

Dried red chili (Capsicum spp.), a widely produced and consumed spice in Nigeria, is often contaminated by aflatoxins. Aflatoxins are potent mycotoxins of severe health and economic concern worldwide. Aspergillus flavus often contaminates crops with aflatoxins in warm regions; however, not all isolates are aflatoxin producers. Nonaflatoxigenic isolates have potential as biocontrol agents for aflatoxin mitigation. The current study examined the genetic diversity of A. flavus (n = 325) associated with chilies in Nigeria and identified 123 nonaflatoxigenic isolates. The Nigerian A. flavus isolates from chili were diverse at 17 microsatellite loci, with 5 to 36 alleles per locus, and included 152 haplotypes. The isolates that are active ingredients in Aflasafe, registered for aflatoxin biocontrol on maize and groundnuts in Nigeria, did not share haplotypes with the chili isolates. Of the 152 haplotypes, 65% produced aflatoxins in autoclaved maize, some of which (17%) produced >100,000 µg/kg of aflatoxins. Aflatoxins were not detected in 35% of the haplotypes. Cluster amplification pattern assay detected large deletions in the aflatoxin biosynthetic clusters of some (32%) of the nonaflatoxigenic haplotypes. Coinfection of chili with nonaflatoxigenic isolates from chilies (n = 7) and A. aflatoxiformans resulted in a significantly greater average reduction in total aflatoxins compared with that achieved by Aflasafe active ingredient isolates (P < 0.01). These nonaflatoxigenic isolates are a genetic resource for the development of biological control products for aflatoxin mitigation in chilies in Nigeria and should be evaluated under field conditions.


Subject(s)
Aflatoxins , Aspergillus flavus , Aspergillus flavus/genetics , Genetic Variation , Haplotypes , Nigeria , Zea mays
9.
J Fungi (Basel) ; 7(9)2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34575811

ABSTRACT

Aspergillus flavus is a common filamentous fungus widely present in the soil, air, and in crops. This facultative pathogen of both animals and plants produces aflatoxins, a group of mycotoxins with strong teratogenic and carcinogenic properties. Peanuts are highly susceptible to aflatoxin contamination and consumption of contaminated peanuts poses serious threats to the health of humans and domestic animals. Currently, the competitive displacement of aflatoxin-producers from agricultural environments by atoxigenic A. flavus is the most effective method of preventing crop aflatoxin contamination. In the current study, 47 isolates of A. flavus collected from peanut samples originating in Shandong Province were characterized with molecular methods and for aflatoxin-producing ability in laboratory studies. Isolates PA04 and PA10 were found to be atoxigenic members of the L strains morphotype. When co-inoculated with A. flavus NRRL3357 at ratios of 1:10, 1:1, and 10:1 (PA04/PA10: NRRL3357), both atoxigenic strains were able to reduce aflatoxin B1 (AFB1) levels, on both culture media and peanut kernels, by up to 90%. The extent to which atoxigenic strains reduced contamination was correlated with the inoculation ratio. Abilities to compete of PA04 and PA10 were also independently verified against local aflatoxin-producer PA37. The results suggest that the two identified atoxigenic strains are good candidates for active ingredients of biocontrol products for the prevention of aflatoxin contamination of peanuts in Shandong Province.

10.
Plant Dis ; 105(9): 2343-2350, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33754847

ABSTRACT

Aflatoxins are potent Aspergillus mycotoxins that contaminate food and feed, thereby impacting health and trade. Biopesticides with atoxigenic Aspergillus flavus isolates as active ingredients are used to reduce aflatoxin contamination in crops. The mechanism of aflatoxin biocontrol is primarily attributed to competitive exclusion but, sometimes, aflatoxin is reduced by greater amounts than can be explained by displacement of aflatoxin-producing fungi on the crop. Objectives of this study were to (i) evaluate the ability of atoxigenic A. flavus genotypes to degrade aflatoxin B1 (AFB1) and (ii) characterize impacts of temperature, time, and nutrient availability on AFB1 degradation by atoxigenic A. flavus. Aflatoxin-contaminated maize was inoculated with atoxigenic isolates in three separate experiments that included different atoxigenic genotypes, temperature, and time as variables. Atoxigenic genotypes varied in aflatoxin degradation but all degraded AFB1 >44% after 7 days at 30°C. The optimum temperature for AFB1 degradation was 25 to 30°C, which is similar to the optimum range for AFB1 production. In a time-course experiment, atoxigenics degraded 40% of AFB1 within 3 days, and 80% of aflatoxin was degraded by day 21. Atoxigenic isolates were able to degrade and utilize AFB1 as a sole carbon source in a chemically defined medium but quantities of AFB1 degraded declined as glucose concentrations increased. Degradation may be an additional mechanism through which atoxigenic A. flavus biocontrol products reduce aflatoxin contamination pre- or postharvest. Thus, selection of optimal atoxigenic active ingredients can include assessment of both competitive ability in agricultural fields and their ability to degrade aflatoxins.


Subject(s)
Aflatoxins , Aspergillus flavus , Aflatoxin B1 , Biological Control Agents , Zea mays
11.
Microorganisms ; 9(1)2021 Jan 09.
Article in English | MEDLINE | ID: mdl-33435439

ABSTRACT

Iron is an essential component for growth and development. Despite relative abundance in the environment, bioavailability of iron is limited due to oxidation by atmospheric oxygen into insoluble ferric iron. Filamentous fungi have developed diverse pathways to uptake and use iron. In the current study, a putative iron utilization gene cluster (IUC) in Aspergillus flavus was identified and characterized. Gene analyses indicate A. flavus may use reductive as well as siderophore-mediated iron uptake and utilization pathways. The ferroxidation and iron permeation process, in which iron transport depends on the coupling of these two activities, mediates the reductive pathway. The IUC identified in this work includes six genes and is located in a highly polymorphic region of the genome. Diversity among A. flavus genotypes is manifested in the structure of the IUC, which ranged from complete deletion to a region disabled by multiple indels. Molecular profiling of A. flavus populations suggests lineage-specific loss of IUC. The observed variation among A. flavus genotypes in iron utilization and the lineage-specific loss of the iron utilization genes in several A. flavus clonal lineages provide insight on evolution of iron acquisition and utilization within Aspergillus section Flavi. The potential divergence in capacity to acquire iron should be taken into account when selecting A. flavus active ingredients for biocontrol in niches where climate change may alter iron availability.

12.
Microb Biotechnol ; 14(4): 1331-1342, 2021 07.
Article in English | MEDLINE | ID: mdl-33336897

ABSTRACT

Human populations in Kenya are repeatedly exposed to dangerous aflatoxin levels through consumption of contaminated crops. Biocontrol with atoxigenic Aspergillus flavus is an effective method for preventing aflatoxin in crops. Although four atoxigenic A. flavus isolates (C6E, E63I, R7H and R7K) recovered from maize produced in Kenya are registered as active ingredients for a biocontrol product (Aflasafe KE01) directed at preventing contamination, natural distributions of these four genotypes prior to initiation of commercial use have not been reported. Distributions of the active ingredients of KE01 based on haplotypes at 17 SSR loci are reported. Incidences of the active ingredients and closely related haplotypes were determined in soil collected from 629 maize fields in consecutive long and short rains seasons of 2012. The four KE01 haplotypes were among the top ten most frequent. Haplotype H-1467 of active ingredient R7K was the most frequent and widespread haplotype in both seasons and was detected in the most soils (3.8%). The four KE01 haplotypes each belonged to large clonal groups containing 27-46 unique haplotypes distributed across multiple areas and in 21% of soils. Each of the KE01 haplotypes belonged to a distinct vegetative compatibility group (VCG), and all A. flavus with haplotypes matching a KE01 active ingredient belonged to the same VCG as the matching active ingredient as did all A. flavus haplotypes differing at only one SSR locus. Persistence of the KE01 active ingredients in Kenyan agroecosystems is demonstrated by detection of identical SSR haplotypes six years after initial isolation. The data provide baselines for assessing long-term influences of biocontrol applications in highly vulnerable production areas of Kenya.


Subject(s)
Aflatoxins , Aspergillus flavus , Biological Control Agents , Mycobiome , Aflatoxins/analysis , Aspergillus flavus/chemistry , Aspergillus flavus/genetics , Kenya , Zea mays
13.
Front Fungal Biol ; 2: 720276, 2021.
Article in English | MEDLINE | ID: mdl-37744097

ABSTRACT

Fungal species within Aspergillus section Flavi contaminate food and feed with aflatoxins. These toxic fungal metabolites compromise human and animal health and disrupt trade. Genotypically and phenotypically diverse species co-infect crops, but temporal and spatial variation in frequencies of different lineages suggests that environmental factors such as temperature may influence structure of aflatoxin-producing fungal communities. Furthermore, though most species within Aspergillus section Flavi produce sclerotia, divergent sclerotial morphologies (small or S-type sclerotia vs. large or L-type sclerotia) and differences in types and quantities of aflatoxins produced suggest lineages are adapted to different life strategies. Temperature is a key parameter influencing pre- and post-harvest aflatoxin contamination of crops. We tested the hypothesis that species of aflatoxin-producing fungi that differ in sclerotial morphology will vary in competitive ability and that outcomes of competition and aflatoxin production will be modulated by temperature. Paired competition experiments between highly aflatoxigenic S-type species (A. aflatoxiformans and Lethal Aflatoxicosis Fungus) and L-type species (A. flavus L morphotype and A. parasiticus) were conducted on maize kernels at 25 and 30°C. Proportions of each isolate growing within and sporulating on kernels were measured using quantitative pyrosequencing. At 30°C, S-type fungi were more effective at host colonization compared to L-type isolates. Total aflatoxins and the proportion of B vs. G aflatoxins were greater at 30°C compared to 25°C. Sporulation by L-type isolates was reduced during competition with S-type fungi at 30°C, while relative quantities of conidia produced by S-type species either increased or did not change during competition. Results indicate that both species interactions and temperature can shape population structure of Aspergillus section Flavi, with warmer temperatures favoring growth and dispersal of highly toxigenic species with S-type sclerotia.

14.
Food Chem ; 341(Pt 1): 128180, 2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33032249

ABSTRACT

Lactobacillus helveticus FAM22155 was the most efficient among five lactic acid bacteria at removing aflatoxin B1 (AFB1) during solid-state fermentation on wheat bran substrate. The mechanism of removal was explored by comparing different fermentation modes. Liquid fermentation had little effect on the breakdown of AFB1. However, a protein extract from the fermented bran was equally effective at degrading aflatoxin B1 as living cell digestion. After treatment with heat and protease K, the degrading capacity of the protein extract was significantly reduced. Taken together, the observed biotransformation of AFB1 was mainly associated with proteins produced during bran fermentation. Four products of U-[13C17]-AFB1 were found by mass spectrometry, including Ⅱ-1 (C11H10O4), Ⅱ-2 (C11H10O4), III (C15H12O5), and IV (C14H10O4). These products all lack the lactone ring indicating lower toxicity than aflatoxin B1.


Subject(s)
Aflatoxin B1/metabolism , Dietary Fiber/microbiology , Lactobacillus helveticus/metabolism , Aflatoxin B1/analysis , Biotransformation , Dietary Fiber/metabolism , Fermentation , Food Microbiology , Lactobacillales/metabolism
15.
Biol Control ; 150: 104351, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33144821

ABSTRACT

Biological control is one of the recommended methods for aflatoxin mitigation. Biocontrol products must be developed, and their efficacy demonstrated before widespread use. Efficacy of two aflatoxin biocontrol products, Aflasafe GH01 and Aflasafe GH02, were evaluated in 800 maize and groundnut farmers' fields during 2015 and 2016 in the Ashanti, Brong Ahafo, Northern, Upper East, and Upper West regions of Ghana. Both products were developed after an extensive examination of fungi associated with maize and groundnut in Ghana. Each product contains as active ingredient fungi four Aspergillus flavus isolates belonging to atoxigenic African Aspergillus Vegetative Compatibility Groups (AAVs) widely distributed across Ghana. An untreated field was maintained for each treated field to determine product efficacy. Proportions of atoxigenic AAVs composing each product were assessed in soils before product application, and soils and grains at harvest. Significant (P < 0.05) displacement of toxigenic fungi occurred in both crops during both years, in all five regions. Biocontrol-treated crops consistently had significantly (P < 0.05) less aflatoxins (range = 76% to 100% less; average = 99% less) than untreated crops. Results indicate that both biocontrol products are highly efficient, cost-effective, environmentally safe tools for aflatoxin mitigation. Most crops from treated fields could have been sold in both local and international food and feed premium markets. Adoption and use of biocontrol products have the potential to improve the health of Ghanaians, and both income and trade opportunities of farmers, aggregators, distributors, and traders.

16.
Front Plant Sci ; 11: 572264, 2020.
Article in English | MEDLINE | ID: mdl-33072148

ABSTRACT

Maize is a staple for billions across the globe. However, in tropical and sub-tropical regions, maize is frequently contaminated with aflatoxins by Aspergillus section Flavi fungi. There is an ongoing search for sources of aflatoxin resistance in maize to reduce continuous exposures of human populations to those dangerous mycotoxins. Large variability in susceptibility to aflatoxin contamination exists within maize germplasm. In Mexico, several maize landrace (MLR) accessions possess superior resistance to both Aspergillus infection and aflatoxin contamination but their mechanisms of resistance have not been reported. Influences of kernel integrity on resistance of four resistant and four susceptible MLR accessions were evaluated in laboratory assays. Wounds significantly (P < 0.05) increased susceptibility to aflatoxin contamination even when kernel viability was unaffected. Treatments supporting greater A. flavus reproduction did not (P > 0.05) proportionally support higher aflatoxin accumulation suggesting differential influences by some resistance factors between sporulation and aflatoxin biosynthesis. Physical barriers (i.e., wax and cuticle) prevented both aflatoxin accumulation and A. flavus sporulation in a highly resistant MLR accession. In addition, influence of temperature on aflatoxin contamination was evaluated in both viable and non-viable kernels of a resistant and a susceptible MLR accession, and a commercial hybrid. Both temperature and living embryo status influenced (P < 0.05) resistance to both aflatoxin accumulation and A. flavus sporulation. Lower sporulation on MLR accessions suggests their utilization would result in reduced speed of propagation and associated epidemic increases in disease both in the field and throughout storage. Results from the current study should encourage researchers across the globe to exploit the large potential that MLRs offer to breed for aflatoxin resistant maize. Furthermore, the studies provide support to the importance of resistance based on the living host and maintaining living status to reducing episodes of post-harvest contamination.

17.
Toxins (Basel) ; 12(10)2020 10 13.
Article in English | MEDLINE | ID: mdl-33066284

ABSTRACT

Aflatoxins (AF) are hepatocarcinogenic metabolites produced by several Aspergillus species. Crop infection by these species results in aflatoxin contamination of cereals, nuts, and spices. Etiology of aflatoxin contamination is complicated by mixed infections of multiple species with similar morphology and aflatoxin profiles. The current study investigates variation in aflatoxin production between two morphologically similar species that co-exist in West Africa, A. aflatoxiformans and A. minisclerotigenes. Consistent distinctions in aflatoxin production during liquid fermentation were discovered between these species. The two species produced similar concentrations of AFB1 in defined media with either urea or ammonium as the sole nitrogen source. However, production of both AFB1 and AFG1 were inhibited (p < 0.001) for A. aflatoxiformans in a yeast extract medium with sucrose. Although production of AFG1 by both species was similar in urea, A. minisclerotigenes produced greater concentrations of AFG1 in ammonium (p = 0.039). Based on these differences, a reliable and convenient assay for differentiating the two species was designed. This assay will be useful for identifying specific etiologic agents of aflatoxin contamination episodes in West Africa and other regions where the two species are sympatric, especially when phylogenetic analyses based on multiple gene segments are not practical.


Subject(s)
Aflatoxin B1/metabolism , Aflatoxins/metabolism , Aspergillus/metabolism , Zea mays/microbiology , Aflatoxin B1/toxicity , Aflatoxins/toxicity , Africa, Western , Ammonia/metabolism , Fermentation , Food Microbiology , Hydrogen-Ion Concentration , Sucrose/metabolism , Urea/metabolism
18.
Article in English | MEDLINE | ID: mdl-33026964

ABSTRACT

Contamination of key staples with aflatoxins compromises the quality of food and feed, impedes trade, and negatively affects the health of consumers whereas acute exposure can be fatal. This study used the Contingent Valuation Method (CVM) on a sample of 480 farmers in counties prone to aflatoxin contamination to assess the willingness to pay (WTP) by farmers for Aflasafe KE01, a promising biological control product for the management of aflatoxin contamination of key staples in Kenya, compare its cost with that of a similar product in use in Nigeria, and determine factors likely to affect its adoption. Four hundred and eighty households from four counties identified as aflatoxin hotspots in Kenya were purposively selected and interviewed using a semi-structured questionnaire. The mean WTP per kilogram of Aflasafe KE01, using Contingent Valuation Method in the four counties ranged from Kenya Shillings (Ksh) 113 to 152/kg compared to a cost of Ksh. 130/kg, the price of a similar product, AflasafeTM, in Nigeria. Factors that positively influenced farmers' WTP included information from crop extension services and access to credit. To facilitate the adoption of Aflasafe KE01 or any other biocontrol product in Kenya and elsewhere, there is a need for increased education efforts through extension services to farmers about aflatoxins. Strategies to ensure that the biocontrol product is integrated into the credit scheme of the technological packages to farmers need to be considered.


Subject(s)
Aflatoxins/chemistry , Food Contamination/prevention & control , Agriculture , Biological Products/chemistry , Cost-Benefit Analysis , Farmers , Humans , Kenya , Nigeria , Occupational Exposure , Risk Assessment
19.
Front Microbiol ; 11: 1236, 2020.
Article in English | MEDLINE | ID: mdl-32625180

ABSTRACT

Aflatoxins are highly toxic carcinogens that detrimentally influence profitability of agriculture and the health of humans and domestic animals. Several phylogenetically distinct fungi within Aspergillus section Flavi have S-morphology (average sclerotial size < 400 µm), and consistently produce high concentrations of aflatoxins in crops. S-morphology fungi have been implicated as important etiologic agents of aflatoxin contamination in the United States (US), but little is known about the diversity of these fungi. The current study characterized S-morphology fungi (n = 494) collected between 2002 and 2017, from soil and maize samples, in US regions where aflatoxin contamination is a perennial problem. Phylogenetic analyses based on sequences of the calmodulin (1.9 kb) and nitrate reductase (2.1 kb) genes resolved S-morphology isolates from the US into four distinct clades: (1) Aspergillus flavus S-morphotype (89.7%); (2) Aspergillus agricola sp. nov. (2.4%); (3) Aspergillus texensis (2.2%); and (4) Aspergillus toxicus sp. nov. (5.7%). All four S-morphology species produced high concentrations of aflatoxins in maize at 25, 30, and 35°C, but only the A. flavus S-morphotype produced unacceptable aflatoxin concentrations at 40°C. Genetic typing of A. flavus S isolates using 17 simple sequence repeat markers revealed high genetic diversity, with 202 haplotypes from 443 isolates. Knowledge of the occurrence of distinct species and haplotypes of S-morphology fungi that are highly aflatoxigenic under a range of environmental conditions may provide insights into the etiology, epidemiology, and management of aflatoxin contamination in North America.

20.
Environ Microbiol ; 22(8): 3522-3534, 2020 08.
Article in English | MEDLINE | ID: mdl-32515100

ABSTRACT

In warm regions, agricultural fields are occupied by complex Aspergillus flavus communities composed of isolates in many vegetative compatibility groups (VCGs) with varying abilities to produce highly toxic, carcinogenic aflatoxins. Aflatoxin contamination is reduced with biocontrol products that enable atoxigenic isolates from atoxigenic VCGs to dominate the population. Shifts in VCG frequencies similar to those caused by the introduction of biocontrol isolates were detected in Sonora, Mexico, where biocontrol is not currently practiced. The shifts were attributed to founder events. Although VCGs reproduce clonally, significant diversity exists within VCGs. Simple sequence repeat (SSR) fingerprinting revealed that increased frequencies of VCG YV150 involved a single haplotype. This is consistent with a founder event. Additionally, great diversity was detected among 82 YV150 isolates collected over 20 years across Mexico and the United States. Thirty-six YV150 haplotypes were separated into two populations by Structure and SplitsTree analyses. Sixty-five percent of isolates had MAT1-1 and belonged to one population. The remaining had MAT1-2 and belonged to the second population. SSR alleles varied within populations, but recombination between populations was not detected despite co-occurrence at some locations. Results suggest that YV150 isolates with opposite mating-type have either strongly restrained or lost sexual reproduction among themselves.


Subject(s)
Aflatoxins/biosynthesis , Aspergillus flavus/growth & development , Aspergillus flavus/genetics , Founder Effect , Genetic Variation/genetics , Aflatoxins/genetics , Aspergillus flavus/metabolism , Biological Control Agents/metabolism , DNA Fingerprinting , Mexico , Microsatellite Repeats/genetics , United States , Zea mays/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...