Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Phys Rev E ; 105(1-2): 015210, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35193236

ABSTRACT

In this article, the stability of a complex plasma monolayer levitating in the sheath of the powered electrode of an asymmetric capacitively coupled radio-frequency argon discharge is studied. Compared to earlier studies, a better integration of the experimental results and theory is achieved by operating with actual experimental control parameters such as the gas pressure and the discharge power. It is shown that for a given microparticle monolayer at a fixed discharge power there exist two threshold pressures: (i) above a specific pressure p_{cryst}, the monolayer always crystallizes; (ii) below a specific pressure p_{MCI}, the crystalline monolayer undergoes the mode-coupling instability and the two-dimensional complex plasma crystal melts. In between p_{MCI} and p_{cryst}, the microparticle monolayer can be either in the fluid phase or the crystal phase: when increasing the pressure from below p_{MCI}, the monolayer remains in the fluid phase until it reaches p_{cryst} at which it recrystallizes; when decreasing the pressure from above p_{cryst}, the monolayer remains in the crystalline phase until it reaches p_{MCI} at which the mode-coupling instability is triggered and the crystal melts. A simple self-consistent sheath model is used to calculate the rf sheath profile, the microparticle charges, and the microparticle resonance frequency as a function of power and background argon pressure. Combined with calculation of the lattice modes the main trends of p_{MCI} as a function of power and background argon pressure are recovered. The threshold of the mode-coupling instability in the crystalline phase is dominated by the crossing of the longitudinal in-plane lattice mode and the out-of plane lattice mode induced by the change of the sheath profile. Ion wakes are shown to have a significant effect too.

2.
Phys Rev E ; 97(4-1): 043206, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29758736

ABSTRACT

The full melting of a two-dimensional plasma crystal was induced in a principally stable monolayer by localized laser stimulation. Two distinct behaviors of the crystal after laser stimulation were observed depending on the amount of injected energy: (i) below a well-defined threshold, the laser melted area recrystallized; (ii) above the threshold, it expanded outwards in a similar fashion to mode-coupling instability-induced melting, rapidly destroying the crystalline order of the whole complex plasma monolayer. The reported experimental observations are due to the fluid mode-coupling instability, which can pump energy into the particle monolayer at a rate surpassing the heat transport and damping rates in the energetic localized melted spot, resulting in its further growth. This behavior exhibits remarkable similarities with impulsive spot heating in ordinary reactive matter.

3.
Phys Rev E ; 96(4-1): 043201, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29347570

ABSTRACT

Using two-dimensional (2D) complex plasmas as an experimental model system, particle-resolved studies of flame propagation in classical 2D solids are carried out. Combining experiments, theory, and molecular dynamics simulations, we demonstrate that the mode-coupling instability operating in 2D complex plasmas reveals all essential features of combustion, such as an activated heat release, two-zone structure of the self-similar temperature profile ("flame front"), as well as thermal expansion of the medium and temperature saturation behind the front. The presented results are of relevance for various fields ranging from combustion and thermochemistry, to chemical physics and synthesis of materials.

4.
Article in English | MEDLINE | ID: mdl-26172809

ABSTRACT

A theory of wave modes in shear-deformed two-dimensional plasma crystals is presented. Modification of the dispersion relations upon the pure and simple shear, and the resulting effect on the onset of the mode-coupling instability, are studied. In particular, it is explained why the velocity fluctuation spectra measured in experiments with sheared crystals exhibit asymmetric "hot spots": It is shown that the coupling of the in-plane compressional and the out-of-plane modes, leading to the formation of an unstable hybrid mode and generation of the hot spots, is enhanced in a certain direction determined by deformation.

5.
Article in English | MEDLINE | ID: mdl-25353582

ABSTRACT

The observation is presented of naturally occurring pairing of particles and their cooperative drift in a two-dimensional plasma crystal. A single layer of plastic microspheres was suspended in the plasma sheath of a capacitively coupled radio-frequency discharge in argon at a low pressure of 1 Pa. The particle dynamics were studied by combining the top-view and side-view imaging of the suspension. Cross-analysis of the particle trajectories allowed us to identify naturally occurring metastable pairs of particles. The lifetime of pairs was long enough for their reliable identification.

6.
Article in English | MEDLINE | ID: mdl-25353905

ABSTRACT

The kinematics of dust particles during the early stage of mode-coupling induced melting of a two-dimensional plasma crystal is explored. It is found that the formation of the hybrid mode causes the particle vibrations to partially synchronize at the hybrid frequency. Phase- and frequency-locked hybrid particle motion in both vertical and horizontal directions (hybrid mode) is observed. The system self-organizes in a rhythmic pattern of alternating in-phase and antiphase oscillating chains of particles. The spatial orientation of the synchronization pattern correlates well with the directions of the maximal increment of the shear-free hybrid mode.


Subject(s)
Liquid Crystals/chemistry , Models, Chemical , Models, Molecular , Oscillometry/methods , Rheology/methods , Computer Simulation , Motion
7.
Article in English | MEDLINE | ID: mdl-23848787

ABSTRACT

An influence of a high-voltage (3-17 kV) 20 ns pulse on a weakly-ionized low-pressure (0.1-10 Pa) capacitively coupled radiofrequency (RF) argon plasma is studied experimentally. The plasma evolution after pulse exhibits two characteristic regimes: a bright flash, occurring within 100 ns after the pulse (when the discharge emission increases by 2-3 orders of magnitude over the steady-state level), and a dark phase, lasting a few hundreds µs (when the intensity of the discharge emission drops significantly below the steady-state level). The electron density increases during the flash and remains very large at the dark phase. 1D3V particle-in-cell simulations qualitatively reproduce both regimes and allow for detailed analysis of the underlying mechanisms. It is found that the high-voltage nanosecond pulse is capable of removing a significant fraction of plasma electrons out of the discharge gap, and that the flash is the result of the excitation of gas atoms, triggered by residual electrons accelerated in the electric field of immobile bulk ions. The secondary emission from the electrodes due to vacuum UV radiation plays an important role at this stage. High-density plasma generated during the flash provides efficient screening of the RF field (which sustains the steady-state plasma). This leads to the electron cooling and, hence, onset of the dark phase.

8.
Phys Rev Lett ; 109(17): 175001, 2012 Oct 26.
Article in English | MEDLINE | ID: mdl-23215194

ABSTRACT

The structure of Mach cones in a crystalline complex plasma has been studied experimentally using an intensity sensitive imaging, which resolved particle motion in three dimensions. This revealed a previously unknown out-of-plane cone structure, which appeared due to excitation of the vertical wave mode. The complex plasma consisted of micron sized particles forming a monolayer in a plasma sheath of a gas discharge. Fast particles, spontaneously moving under the monolayer, created Mach cones with multiple structures. The in-plane cone structure was due to compressional and shear lattice waves.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(4 Pt 2): 046401, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23214694

ABSTRACT

Melting of a two-dimensional plasma crystal occurring due to a mode-coupling instability is studied using particle tracking and particle image velocimetry techniques. By combining these techniques, it is possible to identify the location of a propagating melting front and find a characteristic scale length for the temperature gradient across the front. It is found that the measurements of heat transport are consistent with a simple two-dimensional model allowing us to estimate the thermal diffusivity. The measured values for the thermal diffusivity are consistent with previously measured values.

10.
Phys Rev Lett ; 104(19): 195001, 2010 May 14.
Article in English | MEDLINE | ID: mdl-20866969

ABSTRACT

Dedicated experiments on melting of two-dimensional plasma crystals were carried out. The melting was always accompanied by spontaneous growth of the particle kinetic energy, suggesting a universal plasma-driven mechanism underlying the process. By measuring three principal dust-lattice wave modes simultaneously, it is unambiguously demonstrated that the melting occurs due to the resonance coupling between two of the dust-lattice modes. The variation of the wave modes with the experimental conditions, including the emergence of the resonant (hybrid) branch, reveals exceptionally good agreement with the theory of mode-coupling instability.

11.
Phys Rev Lett ; 103(21): 215001, 2009 Nov 20.
Article in English | MEDLINE | ID: mdl-20366043

ABSTRACT

Spectra of phonons with out-of-plane polarization were studied experimentally in a 2D plasma crystal. The dispersion relation was directly measured for the first time using a novel method of particle imaging. The out-of-plane mode was proven to have negative optical dispersion at small wave numbers, comparison with theory showed good agreement. The effect of the plasma wakes on the dispersion relation is briefly discussed.

12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(2 Pt 2): 026403, 2006 Aug.
Article in English | MEDLINE | ID: mdl-17025546

ABSTRACT

An on-ground measurement of dust-particle residual charges in the afterglow of a dusty plasma was performed in a rf discharge. An upward thermophoretic force was used to balance the gravitational force. It was found that positively charged, negatively charged, and neutral dust particles coexisted for more than 1 min after the discharge was switched off. The mean residual charge for 200-nm-radius particles was measured. The dust particle mean charge is about -5e at a pressure of 1.2 mbar and about -3e at a pressure of 0.4 mbar .

SELECTION OF CITATIONS
SEARCH DETAIL
...