Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Carcinog ; 47(11): 822-34, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18381587

ABSTRACT

The p53 codon 270 CGT to TGT mutation was investigated as a biomarker of sunlight-induced mutagenesis and carcinogenesis. The relationship between tumor development and abundance of this hotspot mutation was analyzed in mouse skin tumors induced by chronic exposure to simulated solar light (SSL). The 24 tumors analyzed had similar growth kinetics, with an average doubling time of approximately 16.4 d. Levels of the p53 codon 270 mutation were quantified in the 24 mouse skin tumors using allele-specific competitive blocker-polymerase chain reaction (ACB-PCR). All tumors contained measurable amounts of the mutation. The p53 codon 270 CGT to TGT mutant fraction (MF) ranged from 2.29 x 10(-3) to 9.42 x 10(-2), with 3.26 x 10(-2) as the median. These p53 MF measurements are lower than expected for an initiating mutation involved in the development of tumors of monoclonal origin. There was no evidence of a correlation between p53 codon 270 MF and either tumor area or an estimate of tumor cell number. Thus, the data do not support the idea that p53 mutation accumulates linearly during tumor development. To investigate how p53 mutation was distributed within tumors, 19 needle biopsies from seven different tumors were analyzed by ACB-PCR. This analysis demonstrated that p53 codon 270 mutation is heterogeneously distributed within tumors. The long-term goal of this research is to combine morphological and p53 MF measurements from tissues corresponding to the various stages of tumor development, in order to derive mathematical models relating the p53 codon 270 mutation to the development of SSL-induced skin tumors.


Subject(s)
Codon/genetics , Neoplasms, Radiation-Induced/metabolism , Neoplasms, Radiation-Induced/pathology , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Animals , Base Sequence , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/radiation effects , Mice , Mutation/genetics , Neoplasms, Radiation-Induced/genetics , RNA, Messenger/genetics , Skin Neoplasms/genetics , Sunlight
2.
Drug Metab Dispos ; 33(10): 1459-65, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16014769

ABSTRACT

Pigment Yellow 74 (PY74) is a monoazo pigment that is used in yellow tattoo inks. The metabolism of PY74 was investigated using rat liver and human liver microsomes and expressed human cytochromes P450 (P450s). Two phase I metabolites were isolated and characterized by mass spectrometry and NMR techniques. One metabolite (PY74-M1) was a ring hydroxylation product of PY74, 2-((2-methoxy-4-nitrophenyl)azo)-N-(2-methoxy-4-hydroxyphenyl)-3-oxobutanamide. The second metabolite (PY74-M2) was identified as 2-((2-hydroxy-4-nitrophenyl)azo)-N-(2-methoxy-4-hydroxyphenyl)-3-oxobutanamide, which is the O-demethylation product of PY74-M1. These metabolites were formed by in vitro incubations of PY74 with 3-methylcholanthrene-induced rat liver microsomes and to a much lesser extent by liver microsomes from untreated or phenobarbital-induced rats. The role for CYP1A in the metabolism of PY74 was confirmed using expressed human P450s. The catalytic ability of the P450s for metabolism of PY74 was CYP 1A2 > CYP 1A1 > CYP 3A4 approximately CYP 1B1 (no activity with CYP 2B6, 2C9, 2D6 or 2E1). The metabolism of PY74-M1 to PY74-M2 was catalyzed only by CYP 1A2 and CYP 1A1 (no activity from CYP 1B1, 2B6, 2C9, 2D6, 2E1, or 3A4). These results demonstrate that the tattoo pigment PY74 is metabolized in vitro by P450 to metabolites that should be available for phase II metabolism and excretion.


Subject(s)
Aniline Compounds/metabolism , Cytochrome P-450 Enzyme System/metabolism , Hydrazones/metabolism , Animals , Humans , Hydroxylation , In Vitro Techniques , Ink , Male , Microsomes, Liver/metabolism , Rats , Rats, Inbred F344 , Rats, Sprague-Dawley , Tattooing
3.
Toxicol Appl Pharmacol ; 209(2): 145-58, 2005 Dec 01.
Article in English | MEDLINE | ID: mdl-15913690

ABSTRACT

Tattooing is a popular cosmetic practice involving more than 45 million US citizens. Since the toxicology of tattoo inks and pigments used to formulate tattoo inks has not been reported, we studied the immunological impact of tattooing and determined recovery time from this trauma. SKH-1 hairless mice were tattooed using commercial tattoo inks or suspensions of titanium dioxide, cadmium sulfide, or iron oxide, and sacrificed at 0.5, 1, 3, 4, 7, or 14 days post-tattooing. Histological evaluation revealed dermal hemorrhage at 0.5 and 1 day. Acute inflammation and epidermal necrosis were initiated at 0.5 day decreasing in incidence by day 14. Dermal necrosis and epidermal hyperplasia were prominent by day 3, reducing in severity by day 14. Chronic active inflammation persisted in all tattooed mice from day 3 to 14 post-tattooing. Inguinal and axillary lymph nodes were pigmented, the inguinal being most reactive as evidenced by lymphoid hyperplasia and polymorphonuclear infiltration. Cutaneous nuclear protein concentrations of nuclear factor-kappa B were elevated between 0.5 and 4 days. Inflammatory and proliferative biomarkers, cyclooxygenase-1, cyclooxygenase-2, and ornithine decarboxylase protein levels were elevated between 0.5 and 4 days in the skin and decreased to control levels by day 14. Interleukin-1 beta and interleukin-10 were elevated in the lymph nodes but suppressed in the tattooed skin, with maximal suppression occurring between days 0.5 and 4. These data demonstrate that mice substantially recover from the tattooing insult by 14 days, leaving behind pigment in the dermis and the regional lymph nodes. The response seen in mice is similar to acute injury seen in humans, suggesting that the murine model might be a suitable surrogate for investigating the toxicological and phototoxicological properties of ingredients used in tattooing.


Subject(s)
Dermatitis/etiology , Ink , Skin/drug effects , Tattooing , Animals , Cadmium Compounds/toxicity , Cyclooxygenase 1/biosynthesis , Cyclooxygenase 2/biosynthesis , Enzyme-Linked Immunosorbent Assay , Female , Ferric Compounds/toxicity , Histocytochemistry , Humans , Interleukin-1/biosynthesis , Interleukin-10/biosynthesis , Lymph Nodes/drug effects , Lymph Nodes/enzymology , Lymph Nodes/immunology , Mice , Mice, Hairless , NF-kappa B/biosynthesis , Ornithine Decarboxylase/biosynthesis , Skin/enzymology , Skin/immunology , Sulfides/toxicity , Titanium/toxicity
4.
Environ Mol Mutagen ; 45(5): 427-34, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15662716

ABSTRACT

Allele-specific competitive blocker PCR (ACB-PCR) amplification and quantification was developed for mouse p53 codon 270 CGT-->TGT base substitution and codon 244/245 AAC/CGC-->AAT/TGC tandem mutation. PCR products corresponding to p53 mutant and wild-type DNA sequences were generated. These DNAs were mixed in known proportions to construct samples with defined mutant fractions and the allele-specific detection of each mutation was systematically optimized. Each assay was used to analyze eight simulated solar light (SSL)-induced tumors. By analyzing mutant fraction (MF) standards in parallel with PCR products generated from tumor samples, p53 mutants could be quantified as subpopulations within the tumors. All eight tumors contained detectable levels of p53 codon 270 CGT-->TGT mutation. Three tumors had p53 MFs between 10(-4) and 10(-3). Five tumors had p53 MFs between 10(-3) and 10(-2). None of the eight mouse skin tumors had measurable levels of p53 codon 244/245 tandem mutation. Frequent detection of p53 codon 270 CGT-->TGT mutation provides additional evidence that a pyrimidine dinucleotide overlapping a methylated CpG site (Pyr(me)CG) is a susceptible target for SSL-induced mutagenesis. The absence of p53 codon 244/245 mutation in tumors may be explained by its mutant p53 phenotype and/or indicate that this site is not methylated. These initial results indicate that p53 codon 270 CGT-->TGT mutation may be a sensitive biomarker for SSL- or UV-induced mutagenesis. This mutational endpoint may be useful for evaluating the co-carcinogenicity of compounds administered in combination with UV or SSL.


Subject(s)
Genes, p53/genetics , Mutation/genetics , Neoplasms, Radiation-Induced/genetics , Polymerase Chain Reaction/methods , Skin Neoplasms/genetics , Animals , Codon/genetics , DNA Mutational Analysis/methods , DNA Primers , Fluorescence , Genetic Markers/genetics , Mice , Mice, Mutant Strains , Radiation, Nonionizing/adverse effects
5.
Photochem Photobiol ; 80(2): 175-84, 2004.
Article in English | MEDLINE | ID: mdl-15362942

ABSTRACT

Tattooing has become a popular recreational practice among younger adults over the past decade. Although some of the pigments used in tattooing have been described, very little is known concerning the toxicology, phototoxicology or photochemistry of these pigments. Seven yellow tattoo inks were obtained from commercial sources and their pigments extracted, identified and quantitatively analyzed. The monoazo compound Pigment Yellow 74 (PY74; CI 11741) was found to be the major pigment in several of the tattoo inks. Solutions of commercial PY74 in tetrahydrofuran (THF) were deoxygenated using argon gas, and the photochemical reaction products were determined after exposure to simulated solar light generated by a filtered 6.5 kW xenon arc lamp. Spectrophotometric and high-pressure liquid chromatography (HPLC) analyses indicated that PY74 photodecomposed to multiple products that were isolated using a combination of silica chromatography and reversed-phase HPLC. Three of the major photodecomposition products were identified by nuclear magnetic resonance and mass spectrometry as N-(2-methoxyphenyl)-3-oxobutanamide (o-acetoacetanisidide), 2-(hydroxyimine)-N-(2-methoxyphenyl)-3-oxobutanamide and N,N''-bis(2-methoxyphenyl)urea. These results demonstrate that PY74 is not photostable in THF and that photochemical lysis occurs at several sites in PY74 including the hydrazone and amide groups. The data also suggest that the use of PY74 in tattoo inks could potentially result in the formation of photolysis products, resulting in toxicity at the tattoo site after irradiation with sunlight or more intense light sources.


Subject(s)
Aniline Compounds/chemistry , Coloring Agents/chemistry , Hydrazones/chemistry , Ink , Photolysis , Tattooing , Chromatography, High Pressure Liquid , Magnetic Resonance Spectroscopy , Molecular Structure , Tattooing/instrumentation
6.
Toxicol Appl Pharmacol ; 185(3): 153-65, 2002 Dec 15.
Article in English | MEDLINE | ID: mdl-12498732

ABSTRACT

Fumonisinmycotoxins are produced by Fusaria fungi that grow worldwide primarily on corn. Fumonisin B(1), the most predominant form in corn samples, is a renal carcinogen in male F344/N rats and a hepatocarcinogen in female B6C3F(1) mice when fed at concentrations higher than 50 ppm (70 micromol/kg) in the diet for 2 years. We sought to determine the relative toxicities of several naturally occurring fumonisin derivatives when included in the diet of female B6C3F(1) mice. Mice were fed diets containing fumonisin B(1), fumonisin B(2), fumonisin B(3), fumonisin P1, hydrolyzed-fumonisin B(1), N-(acetyl)fumonisin B(1), or N-(carboxymethyl)fumonisin B(1) (approximately 0, 14, 70, and 140 micromol/kg diet) for 28 days. None of the doses used caused a decrease in body weight gain over the 28 days. Serum levels of total bile acids, cholesterol, and alkaline phosphatase were increased only in mice receiving 72 and 143 micromol/kg fumonisin B(1), suggesting that only fumonisin B(1) was hepatotoxic in the mice. Corroborating this observation, the liver weight, relative to body weight, was decreased only in the mice that consumed 143 micromol/kg fumonisin B(1). Consistent with fumonisin B(1) inhibition of ceramide synthase, the liver sphinganine-to-sphingosine ratio was increased and the liver ceramide levels were decreased only in the mice receiving 72 and 143 micromol/kg fumonisin B(1). Increased hepatocellular apoptosis, hepatocellular hypertrophy, Kupffer cell hyperplasia, and macrophage pigmentation were detected in the mice consuming 72 and 143 micromol/kg fumonisin B(1). The other fumonisin derivatives did not alter serum analytes, organ weights, or hepatic structure. These results suggest that, of the naturally occurring fumonisins, fumonisin B(1) is the principal hepatotoxic derivative in the B6C3F(1) mouse.


Subject(s)
Carcinogens, Environmental/toxicity , Fumonisins/toxicity , Sphingosine/analogs & derivatives , Alkaline Phosphatase/metabolism , Animals , Bile Acids and Salts/metabolism , Blood Chemical Analysis , Body Weight/drug effects , Carcinogens, Environmental/chemistry , Ceramides/metabolism , Cholesterol/blood , Chromatography, High Pressure Liquid , Diet , Female , Fumonisins/chemistry , Mice , Mice, Inbred Strains , Organ Size/drug effects , Proteinuria/metabolism , Sphingosine/metabolism
7.
Toxicol Appl Pharmacol ; 184(3): 136-43, 2002 Nov 01.
Article in English | MEDLINE | ID: mdl-12460741

ABSTRACT

alpha- and beta-Hydroxy acids have been used extensively in cosmetic and dermatological formulations. At present, there is an inadequate amount of information with which to assess the safety of topical applications of alpha- and beta-hydroxy acids in conjunction with exposure to ultraviolet light. In the present study, we examined changes in the epidermal basal cell proliferation and the edemal response using skin thickness measurements elicited in SKH-1 mice following exposure to simulated solar light (SSL) with or without topical treatment with creams containing alpha- (glycolic) and beta-hydroxy (salicylic) acids. The dose of SSL light required to induce measurable edema (MED(BIOL)) in nai;ve, free-moving SKH-1 mice was determined to be 90 mJ. CIE/cm(2). Pretreating the mice with daily (5 days/week) exposures of 14 mJ. CIE/cm(2) for 6 weeks resulted in a doubling of the MED(BIOL) to 180 mJ. CIE/cm(2). Topical application of control cream (pH 3.5), or creams containing glycolic acid (10%, pH 3.5) or salicylic acid (4%, pH 3.5) for 6 weeks (5 days/week) increased the MED(BIOL) to 137 mJ. CIE/cm(2). Daily treatments with SSL (14 mJ. CIE/cm(2)) and control cream (pH 3.5), glycolic (10%, pH 3.5) or salicylic (4%, pH 3.5) acid-containing creams for 6 weeks (5 days/week) resulted in an MED(BIOL) value of 180 mJ. CIE/cm(2), which was the same as treatment with light alone for 6 weeks. These data indicate that a 6-week treatment of mouse skin with a representative skin cream, with or without representative alpha- and beta-hydroxy acids (glycolic and salicylic acid, respectively), changes the UV light sensitivity; however, treatment with the cream, with or without the acids, does not contribute to the UV sensitivity of mice cotreated with low doses of UV light.


Subject(s)
Epidermis/drug effects , Epidermis/radiation effects , Glycolates/pharmacology , Keratolytic Agents/pharmacology , Salicylic Acid/pharmacology , Ultraviolet Rays , Administration, Topical , Animals , Cell Division/drug effects , Cell Division/radiation effects , Disease Models, Animal , Dose-Response Relationship, Radiation , Edema/etiology , Edema/pathology , Epidermis/pathology , Female , Glycolates/administration & dosage , Keratolytic Agents/administration & dosage , Mice , Mice, Hairless , Salicylic Acid/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...